A Graph Sufficiency Perspective for Neural Networks
- URL: http://arxiv.org/abs/2507.10215v1
- Date: Mon, 14 Jul 2025 12:31:47 GMT
- Title: A Graph Sufficiency Perspective for Neural Networks
- Authors: Cencheng Shen, Yuexiao Dong,
- Abstract summary: This paper analyzes neural networks through graph variables and statistical sufficiency.<n>We prove that sufficiency holds in the infinite-width limit and is preserved throughout training.<n>This work bridges statistical sufficiency, graph-theoretic representations, and deep learning, providing a new statistical understanding of neural networks.
- Score: 4.872570541276082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes neural networks through graph variables and statistical sufficiency. We interpret neural network layers as graph-based transformations, where neurons act as pairwise functions between inputs and learned anchor points. Within this formulation, we establish conditions under which layer outputs are sufficient for the layer inputs, that is, each layer preserves the conditional distribution of the target variable given the input variable. Under dense anchor point assumptions, we prove that asymptotic sufficiency holds in the infinite-width limit and is preserved throughout training. To align more closely with practical architectures, we further show that sufficiency can be achieved with finite-width networks by assuming region-separated input distributions and constructing appropriate anchor points. Our framework covers fully connected layers, general pairwise functions, ReLU and sigmoid activations, and convolutional neural networks. This work bridges statistical sufficiency, graph-theoretic representations, and deep learning, providing a new statistical understanding of neural networks.
Related papers
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.<n>We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.<n>This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Half-Space Feature Learning in Neural Networks [2.3249139042158853]
There currently exist two extreme viewpoints for neural network feature learning.
We argue neither interpretation is likely to be correct based on a novel viewpoint.
We use this alternate interpretation to motivate a model, called the Deep Linearly Gated Network (DLGN)
arXiv Detail & Related papers (2024-04-05T12:03:19Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons [50.33260238739837]
Graph networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data.<n>There remains a lack of analysis comparing GNNs and generalizations from an optimization and generalization perspective.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Subspace Clustering Based Analysis of Neural Networks [7.451579925406617]
We learn affinity graphs from the latent structure of a given neural network layer trained over a set of inputs.
We then use tools from Community Detection to quantify structures present in the input.
We analyze the learned affinity graphs of the final convolutional layer of the network and demonstrate how an input's local neighbourhood affects its classification by the network.
arXiv Detail & Related papers (2021-07-02T22:46:40Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.