Secure and Efficient Quantum Signature Scheme Based on the Controlled Unitary Operations Encryption
- URL: http://arxiv.org/abs/2507.10233v1
- Date: Mon, 14 Jul 2025 12:56:09 GMT
- Title: Secure and Efficient Quantum Signature Scheme Based on the Controlled Unitary Operations Encryption
- Authors: Debnath Ghosh, Soumit Roy, Prithwi Bagchi, Indranil Chakrabarty, Ashok Kumar Das,
- Abstract summary: We present an efficient arbitrated quantum signature protocol to encrypt quantum message ensembles.<n>In contrast to existing protocols, our approach successfully prevents disavowal and forgery attacks.
- Score: 5.662132994900804
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum digital signatures ensure unforgeable message authenticity and integrity using quantum principles, offering unconditional security against both classical and quantum attacks. They are crucial for secure communication in high-stakes environments, ensuring trust and long-term protection in the quantum era. Nowadays, the majority of arbitrated quantum signature (AQS) protocols encrypt data qubit by qubit using the quantum one-time pad (QOTP). Despite providing robust data encryption, QOTP is not a good fit for AQS because of its susceptibility to many types of attacks. In this work, we present an efficient AQS protocol to encrypt quantum message ensembles using a distinct encryption technique, the chained controlled unitary operations. In contrast to existing protocols, our approach successfully prevents disavowal and forgery attacks. We hope this contributes to advancing future investigations into the development of AQS protocols.
Related papers
- Secure and practical Quantum Digital Signatures [0.0]
Quantum Digital Signatures (QDS) can offer solutions that are information-theoretically (IT) secure and thus immune to quantum attacks.<n>We analyze three existing practical QDS protocols based on preshared secure keys and universal hashing families.<n>We numerically optimize the protocol parameters to improve efficiency in terms of preshared bit consumption and signature length.
arXiv Detail & Related papers (2025-08-07T13:03:43Z) - A Quantum Good Authentication Protocol [0.0]
This article presents a novel network protocol that incorporates a quantum photonic channel for symmetric key distribution.<n>The protocol uses strong hash functions to hash original messages and verify heightened data integrity at the destination.
arXiv Detail & Related papers (2025-03-05T20:30:34Z) - Combined Quantum and Post-Quantum Security for Earth-Satellite Channels [3.835450563934687]
We present results from a real-time prototype quantum key distribution (QKD) system.<n>A unique aspect of our system is the integration of QKD with existing cryptographic methods to ensure quantum-resistant security.<n>Our work demonstrates, for the first time, a deployment of the BBM92 protocol that offers both post-quantum security via the advanced encryption standard (AES) and quantum security via an entanglement-based QKD protocol.
arXiv Detail & Related papers (2025-02-20T04:08:23Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.<n>We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a novel quantum digital signature protocol without a trusted third-party.<n>We prove that the protocol has information-theoretical unforgeability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [37.69303106863453]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.<n>This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Authentication of quantum key distribution with post-quantum
cryptography and replay attacks [1.8476815769956565]
Quantum key distribution (QKD) and post-quantum cryptography (PQC) are two cryptographic mechanisms with quantum-resistant security.
We propose two protocols based on PQC to realize the full authentication of QKD data post-processing.
arXiv Detail & Related papers (2022-06-02T17:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.