Recognizing Dementia from Neuropsychological Tests with State Space Models
- URL: http://arxiv.org/abs/2507.10311v1
- Date: Mon, 14 Jul 2025 14:15:47 GMT
- Title: Recognizing Dementia from Neuropsychological Tests with State Space Models
- Authors: Liming Wang, Saurabhchand Bhati, Cody Karjadi, Rhoda Au, James Glass,
- Abstract summary: Automatic dementia classification (ADC) systems aim to infer cognitive decline directly from speech recordings of such tests.<n>We propose Demenba, a novel ADC framework based on state space models, which scale linearly in memory and computation with sequence length.
- Score: 20.45041226362966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of dementia is critical for timely medical intervention and improved patient outcomes. Neuropsychological tests are widely used for cognitive assessment but have traditionally relied on manual scoring. Automatic dementia classification (ADC) systems aim to infer cognitive decline directly from speech recordings of such tests. We propose Demenba, a novel ADC framework based on state space models, which scale linearly in memory and computation with sequence length. Trained on over 1,000 hours of cognitive assessments administered to Framingham Heart Study participants, some of whom were diagnosed with dementia through adjudicated review, our method outperforms prior approaches in fine-grained dementia classification by 21\%, while using fewer parameters. We further analyze its scaling behavior and demonstrate that our model gains additional improvement when fused with large language models, paving the way for more transparent and scalable dementia assessment tools. Code: https://anonymous.4open.science/r/Demenba-0861
Related papers
- AUTOCT: Automating Interpretable Clinical Trial Prediction with LLM Agents [47.640779069547534]
AutoCT is a novel framework that combines the reasoning capabilities of large language models with the explainability of classical machine learning.<n>We show that AutoCT performs on par with or better than SOTA methods on clinical trial prediction tasks within only a limited number of self-refinement iterations.
arXiv Detail & Related papers (2025-06-04T11:50:55Z) - Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia [44.39545678576284]
This study analyzes home activity data from individuals living with dementia by proposing a two-stage, self-supervised learning approach.<n>The first stage converts time-series activities into text sequences encoded by a pre-trained language model.<n>This PageRank vector captures latent state transitions, effectively compressing complex behaviour data into a succinct form.
arXiv Detail & Related papers (2025-02-13T10:57:25Z) - Dementia Classification Using Acoustic Speech and Feature Selection [0.3749861135832073]
The study employs Ridge linear regression, Extreme Minimal Learning Machine, and Linear Support Vector Machine learning models to compute feature importance scores based on model outputs.<n>The study's results rank among the top compared to other studies using the same dataset and acoustic feature extraction for dementia diagnosis.
arXiv Detail & Related papers (2025-02-04T14:50:19Z) - CognoSpeak: an automatic, remote assessment of early cognitive decline in real-world conversational speech [13.530437810265814]
This paper presents CognoSpeak and its associated data collection efforts.<n>CognoSpeak asks memory-probing long and short-term questions and administers cognitive tasks using a virtual agent on a mobile or web platform.<n>It collects multimodal data such as audio and video along with a rich set of metadata from primary and secondary care, memory clinics and remote settings like people's homes.
arXiv Detail & Related papers (2025-01-10T07:13:42Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs.
Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder.
In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data.
arXiv Detail & Related papers (2024-05-20T15:44:07Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
Alzheimer's Dementia (AD) is an incurable, debilitating, and progressive neurodegenerative condition that affects cognitive function.
The Alzheimer's Dementia Recognition through Spontaneous Speech task offers acoustically pre-processed and balanced datasets for the classification and prediction of AD.
arXiv Detail & Related papers (2020-06-12T17:51:16Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.