MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-based Motion Capture Data
- URL: http://arxiv.org/abs/2507.10334v1
- Date: Mon, 14 Jul 2025 14:41:19 GMT
- Title: MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-based Motion Capture Data
- Authors: Mahmoud Bekhit, Ahmad Salah, Ahmed Salim Alrawahi, Tarek Attia, Ahmed Ali, Esraa Eldesokey, Ahmed Fathalla,
- Abstract summary: Motion capture (MoCap) data from wearable Inertial Measurement Units (IMUs) is vital for applications in sports science.<n>Despite numerous imputation techniques, a systematic performance evaluation for IMU-derived MoCap time-series data is lacking.
- Score: 4.498558555177452
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Motion capture (MoCap) data from wearable Inertial Measurement Units (IMUs) is vital for applications in sports science, but its utility is often compromised by missing data. Despite numerous imputation techniques, a systematic performance evaluation for IMU-derived MoCap time-series data is lacking. We address this gap by conducting a comprehensive comparative analysis of statistical, machine learning, and deep learning imputation methods. Our evaluation considers three distinct contexts: univariate time-series, multivariate across subjects, and multivariate across kinematic angles. To facilitate this benchmark, we introduce the first publicly available MoCap dataset designed specifically for imputation, featuring data from 53 karate practitioners. We simulate three controlled missingness mechanisms: missing completely at random (MCAR), block missingness, and a novel value-dependent pattern at signal transition points. Our experiments, conducted on 39 kinematic variables across all subjects, reveal that multivariate imputation frameworks consistently outperform univariate approaches, particularly for complex missingness. For instance, multivariate methods achieve up to a 50% mean absolute error reduction (MAE from 10.8 to 5.8) compared to univariate techniques for transition point missingness. Advanced models like Generative Adversarial Imputation Networks (GAIN) and Iterative Imputers demonstrate the highest accuracy in these challenging scenarios. This work provides a critical baseline for future research and offers practical recommendations for improving the integrity and robustness of Mo-Cap data analysis.
Related papers
- Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning [71.3533541927459]
We propose a novel data selection paradigm termed Activation Reasoning Potential (RAP)<n>RAP identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning.<n>Our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
arXiv Detail & Related papers (2025-06-05T08:40:24Z) - Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation [13.771292428542438]
We propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation.<n>We employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates.<n>Our TGC model exhibits stronger robustness to the varying missing ratios in the test dataset.
arXiv Detail & Related papers (2025-04-03T06:44:05Z) - M$^3$-Impute: Mask-guided Representation Learning for Missing Value Imputation [12.174699459648842]
M$3$-Impute aims to explicitly leverage the missingness information and such correlations with novel masking schemes.
Experiment results show the effectiveness of M$3$-Impute by achieving 20 best and 4 second-best MAE scores on average.
arXiv Detail & Related papers (2024-10-11T13:25:32Z) - Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning [6.635084843592727]
We propose SCAlable Numerical Embedding (SCANE), a novel framework that treats each feature value as an independent token.
SCANE regularizes the traits of distinct feature embeddings and enhances representational learning through a scalable embedding mechanism.
We develop the nUMerical eMbeddIng Transformer (SUMMIT), which is engineered to deliver precise predictive outputs for MTS characterized by prevalent missing entries.
arXiv Detail & Related papers (2024-05-26T13:06:45Z) - PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation [35.34932609930401]
This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation.<n>It captures variability in expert annotations, even in small datasets.<n>Our experiments are also the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
We propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSC$ell_4$Net.
arXiv Detail & Related papers (2021-03-22T05:19:40Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.