Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation
- URL: http://arxiv.org/abs/2504.02317v1
- Date: Thu, 03 Apr 2025 06:44:05 GMT
- Title: Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation
- Authors: Ye Su, Hezhe Qiao, Di Wu, Yuwen Chen, Lin Chen,
- Abstract summary: We propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation.<n>We employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates.<n>Our TGC model exhibits stronger robustness to the varying missing ratios in the test dataset.
- Score: 13.771292428542438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The imputation of the Multivariate time series (MTS) is particularly challenging since the MTS typically contains irregular patterns of missing values due to various factors such as instrument failures, interference from irrelevant data, and privacy regulations. Existing statistical methods and deep learning methods have shown promising results in time series imputation. In this paper, we propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation. The key idea is to leverage the Gaussian Copula to explore the cross-variable and temporal relationships based on the latent Gaussian representation. Subsequently, we employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates. Comprehensive experiments were conducted on three real-world MTS datasets. The results demonstrate that our TGC substantially outperforms the state-of-the-art imputation methods. Additionally, the TGC model exhibits stronger robustness to the varying missing ratios in the test dataset. Our code is available at https://github.com/MVL-Lab/TGC-MTS.
Related papers
- MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
Key research question is how to ensure imputation consistency, i.e., intra-consistency between observed and imputed values.
Previous methods rely solely on the inductive bias of the imputation targets to guide the learning process.
arXiv Detail & Related papers (2024-08-11T10:24:53Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning [6.635084843592727]
We propose SCAlable Numerical Embedding (SCANE), a novel framework that treats each feature value as an independent token.
SCANE regularizes the traits of distinct feature embeddings and enhances representational learning through a scalable embedding mechanism.
We develop the nUMerical eMbeddIng Transformer (SUMMIT), which is engineered to deliver precise predictive outputs for MTS characterized by prevalent missing entries.
arXiv Detail & Related papers (2024-05-26T13:06:45Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Effective Abnormal Activity Detection on Multivariate Time Series
Healthcare Data [8.84352369893021]
We propose a Residual-based Anomaly Detection approach, Rs-AD, for effective representation learning and abnormal activity detection.
We evaluate our scheme on a real-world gait dataset and the experimental results demonstrate an F1 score of 0.839.
arXiv Detail & Related papers (2023-09-11T22:08:09Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
We propose a Time-series Representational Learning through Contrastive Predictive Coding (TRL-CPC) towards anomaly detection in MVTS data.
First, we jointly optimize an encoder, an auto-regressor and a non-linear transformation function to effectively learn the representations of the MVTS data sets.
arXiv Detail & Related papers (2022-02-08T04:25:29Z) - Self-supervised Transformer for Multivariate Clinical Time-Series with
Missing Values [7.9405251142099464]
We present STraTS (Self-supervised Transformer for TimeSeries) model.
It treats time-series as a set of observation triplets instead of using the traditional dense matrix representation.
It shows better prediction performance than state-of-theart methods for mortality prediction, especially when labeled data is limited.
arXiv Detail & Related papers (2021-07-29T19:39:39Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.