論文の概要: Meanings are like Onions: a Layered Approach to Metaphor Processing
- arxiv url: http://arxiv.org/abs/2507.10354v1
- Date: Mon, 14 Jul 2025 14:56:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.175426
- Title: Meanings are like Onions: a Layered Approach to Metaphor Processing
- Title(参考訳): 意味はオニオンに似ている:メタファー処理への階層的アプローチ
- Authors: Silvia Cappa, Anna Sofia Lippolis, Stefano Zoia,
- Abstract要約: 意味を玉ねぎとして扱うメタファー処理のモデルを提案する。
第一段階では、メタファーは基本的な概念的要素によって注釈付けされる。
第2のレベルでは、概念の組み合わせをモデル化し、コンポーネントを創発的な意味にリンクする。
第3のレベルでは、話者意図、コミュニケーション機能、文脈効果を捉えるために、実践的な語彙を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Metaphorical meaning is not a flat mapping between concepts, but a complex cognitive phenomenon that integrates multiple levels of interpretation. In this paper, we propose a stratified model of metaphor processing that treats meaning as an onion: a multi-layered structure comprising (1) content analysis, (2) conceptual blending, and (3) pragmatic intentionality. This three-dimensional framework allows for a richer and more cognitively grounded approach to metaphor interpretation in computational systems. At the first level, metaphors are annotated through basic conceptual elements. At the second level, we model conceptual combinations, linking components to emergent meanings. Finally, at the third level, we introduce a pragmatic vocabulary to capture speaker intent, communicative function, and contextual effects, aligning metaphor understanding with pragmatic theories. By unifying these layers into a single formal framework, our model lays the groundwork for computational methods capable of representing metaphorical meaning beyond surface associations, toward deeper, more context-sensitive reasoning.
- Abstract(参考訳): メタフォリカルな意味は概念間の平らなマッピングではなく、複数のレベルの解釈を統合する複雑な認知現象である。
本稿では,(1) 内容分析,(2) 概念ブレンディング,(3) 実践的意図性を含む多層構造,という,意味をオニオンとして扱うメタファー処理の階層化モデルを提案する。
この3次元のフレームワークは、計算システムにおける比喩解釈に対するより豊かで認知的なアプローチを可能にする。
第一段階では、メタファーは基本的な概念的要素によって注釈付けされる。
第2のレベルでは、概念の組み合わせをモデル化し、コンポーネントを創発的な意味にリンクする。
最後に、第3段階において、話者意図、コミュニケーション機能、文脈効果を捉え、メタファの理解を実用理論と整合させる実用的な語彙を導入する。
これらの層を単一の形式的な枠組みに統一することにより、我々のモデルは、より深く、より文脈に敏感な推論に向けて、表面的関連を超えた比喩的な意味を表現することのできる計算手法の基礎を定めている。
関連論文リスト
- Human-like conceptual representations emerge from language prediction [72.5875173689788]
大規模言語モデル(LLMs)は、言語データに対する次世代の予測を通じてのみ訓練され、顕著な人間的な振る舞いを示す。
これらのモデルは、人間に似た概念を発達させ、もしそうなら、そのような概念はどのように表現され、組織化されるのか?
以上の結果から,LLMは言語記述から他の概念に関する文脈的手がかりに関して柔軟に概念を導出できることが示唆された。
これらの結果は、構造化された人間のような概念表現が、現実世界の接地なしに言語予測から自然に現れることを証明している。
論文 参考訳(メタデータ) (2025-01-21T23:54:17Z) - A Complexity-Based Theory of Compositionality [53.025566128892066]
AIでは、構成表現は配布外一般化の強力な形式を可能にすることができる。
ここでは、構成性に関する直観を考慮し、拡張する、表現的構成性と呼ばれる定義を提案する。
私たちは、AIと認知科学の両方において、文学全体から異なる直観を統一する方法を示します。
論文 参考訳(メタデータ) (2024-10-18T18:37:27Z) - Science is Exploration: Computational Frontiers for Conceptual Metaphor Theory [0.0]
本研究では,Large Language Models (LLM) が,自然言語データにおける概念的メタファの存在を正確に識別し,説明することができることを示す。
メタファアノテーションガイドラインに基づく新しいプロンプト手法を用いて,LLMが概念的メタファに関する大規模計算研究において有望なツールであることを実証した。
論文 参考訳(メタデータ) (2024-10-11T17:03:13Z) - Compositional Entailment Learning for Hyperbolic Vision-Language Models [54.41927525264365]
画像とテキストのペアを超えて、双曲的埋め込みの自然的階層性を完全に活用する方法を示す。
双曲型視覚言語モデルのための構成的包摂学習を提案する。
数百万の画像テキストペアで訓練された双曲型視覚言語モデルに対する経験的評価は、提案手法が従来のユークリッドCLIP学習より優れていることを示している。
論文 参考訳(メタデータ) (2024-10-09T14:12:50Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - MetaCLUE: Towards Comprehensive Visual Metaphors Research [43.604408485890275]
本稿では,視覚的メタファの視覚的タスクであるMetaCLUEを紹介する。
我々は、アノテーションに基づいて、視覚と言語における最先端モデルの包括的分析を行う。
この研究が、人間のようなクリエイティブな能力を持つAIシステムを開発するための具体的なステップを提供することを期待している。
論文 参考訳(メタデータ) (2022-12-19T22:41:46Z) - Toward a Visual Concept Vocabulary for GAN Latent Space [74.12447538049537]
本稿では,GANの潜在空間で表現される原始視覚概念のオープンエンド語彙を構築するための新しい手法を提案する。
提案手法は, 層選択性に基づく知覚的正当方向の自動識別, 自由形, 構成的自然言語記述による人為的アノテーションの3つの要素から構成される。
実験により、我々のアプローチで学んだ概念は信頼性があり、構成可能であることが示され、クラス、コンテキスト、オブザーバをまたいで一般化される。
論文 参考訳(メタデータ) (2021-10-08T17:58:19Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
我々は、関連する動詞を置き換えることで、リテラル表現を与えられた比喩文を生成することを目指している。
本稿では,認知領域間の概念マッピングを符号化することで生成過程を制御することを提案する。
教師なしCM-Lexモデルは,近年のディープラーニングメタファ生成システムと競合することを示す。
論文 参考訳(メタデータ) (2021-06-02T15:27:05Z) - Towards Visual Semantics [17.1623244298824]
私たちは、人間の視覚的知覚の精神表現、すなわち概念の構築方法を研究します。
本稿では,分類概念と呼ばれる概念に対応する物質概念を学習する理論とアルゴリズムを提案する。
予備的な実験は、アルゴリズムが正しい精度で属と分化の概念を取得することを証明している。
論文 参考訳(メタデータ) (2021-04-26T07:28:02Z) - MERMAID: Metaphor Generation with Symbolism and Discriminative Decoding [22.756157298168127]
メタファーとシンボル間の理論的に基底的な接続に基づいて,並列コーパスを自動構築する手法を提案する。
生成タスクには、並列データに微調整されたシーケンスモデルへのシーケンスの復号を導くためのメタファ判別器を組み込んだ。
課題に基づく評価では、比喩のない詩に比べて、比喩で強化された人文詩が68%の時間を好むことが示されている。
論文 参考訳(メタデータ) (2021-03-11T16:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。