Suppressing crosstalk for Rydberg quantum gates
- URL: http://arxiv.org/abs/2507.10356v1
- Date: Mon, 14 Jul 2025 14:57:50 GMT
- Title: Suppressing crosstalk for Rydberg quantum gates
- Authors: Gina Warttmann, Florian Meinert, Hans Peter Büchler, Sebastian Weber,
- Abstract summary: We present a method to suppress crosstalk from implementing controlled-Z gates via local addressing in neutral atom quantum computers.<n>Our results pave the way for using local addressing for high-fidelity quantum gates on Rydberg-based quantum computers.
- Score: 0.09999629695552195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to suppress crosstalk from implementing controlled-Z gates via local addressing in neutral atom quantum computers. In these systems, a fraction of the laser light that is applied locally to implement gates typically leaks to other atoms. We analyze the resulting crosstalk in a setup of two gate atoms and one neighboring third atom. We then perturbatively derive a spin-echo-inspired gate protocol that suppresses the leading order of the amplitude error, which dominates the crosstalk. Numerical simulations demonstrate that our gate protocol improves the fidelity by two orders of magnitude across a broad range of experimentally relevant parameters. To further reduce the infidelity, we develop a circuit to cancel remaining phase errors. Our results pave the way for using local addressing for high-fidelity quantum gates on Rydberg-based quantum computers.
Related papers
- Toffoli and C$^\text{n}$NOT (n$>2$) gates in a neutral-atom platform using Rydberg coupling and dark state resonances [0.0]
We propose a protocol for realizing a Toffoli gate using neutral-atom qubits in optical tweezers.<n>Our method relies on the strong and long-range interactions between atoms due to Rydberg excitations and the occurrence of dark states in the target qubit.
arXiv Detail & Related papers (2025-07-03T11:13:42Z) - Multi-Target Rydberg Gates via Spatial Blockade Engineering [47.582155477608445]
Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction.<n>We propose single-control-multi-target CZotimes N gates on a single-species neutral-atom platform.<n>We synthesise smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively.
arXiv Detail & Related papers (2025-04-21T17:59:56Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Two-qubit gate in neutral atoms using transitionless quantum driving [0.0]
A neutral-atom system serves as a promising platform for realizing gate-based quantum computing.
The two-qubit entangling gate fidelity lags behind competing platforms such as superconducting systems and trapped ions.
We propose a fast, robust, high-fidelity controlled-Z gate, based on the Rydberg-blockade mechanism, for neutral atoms.
arXiv Detail & Related papers (2022-06-17T17:51:49Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Quantum Circuit Engineering for Correcting Coherent Noise [1.0965065178451106]
Crosstalk and several sources of operational interference are invisible when qubit or a gate is calibrated or benchmarked in isolation.
Unwanted Z-Z coupling on superconducting cross-resonance CNOT gates, is a commonly occurring unitary crosstalk noise.
Experiments aggressively deploy forced commutation of CNOT gates to obtain low noise state-preparation circuits.
arXiv Detail & Related papers (2021-09-08T10:33:18Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.