論文の概要: Devanagari Handwritten Character Recognition using Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2507.10398v1
- Date: Mon, 14 Jul 2025 15:38:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.273227
- Title: Devanagari Handwritten Character Recognition using Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた手書き文字認識
- Authors: Diksha Mehta, Prateek Mehta,
- Abstract要約: デバナガリ文字は、適切なデジタル化ツールを持たないインド最古の言語スクリプトの1つである。
本稿では,2つのディープ畳み込みニューラルネットワーク層を用いて手書きのデバナガリ文字を認識する手法を提案する。
このアプローチは96.36%の精度で、99.55%のトレーニング時間を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handwritten character recognition is getting popular among researchers because of its possible applications in facilitating technological search engines, social media, recommender systems, etc. The Devanagari script is one of the oldest language scripts in India that does not have proper digitization tools. With the advancement of computing and technology, the task of this research is to extract handwritten Hindi characters from an image of Devanagari script with an automated approach to save time and obsolete data. In this paper, we present a technique to recognize handwritten Devanagari characters using two deep convolutional neural network layers. This work employs a methodology that is useful to enhance the recognition rate and configures a convolutional neural network for effective Devanagari handwritten text recognition (DHTR). This approach uses the Devanagari handwritten character dataset (DHCD), an open dataset with 36 classes of Devanagari characters. Each of these classes has 1700 images for training and testing purposes. This approach obtains promising results in terms of accuracy by achieving 96.36% accuracy in testing and 99.55% in training time.
- Abstract(参考訳): 手書き文字認識は、技術検索エンジン、ソーシャルメディア、レコメンダシステムなどに役立つ可能性があるため、研究者の間で人気が高まっている。
デバナガリ文字は、適切なデジタル化ツールを持たないインド最古の言語スクリプトの1つである。
本研究の目的は,コンピュータと技術の進歩により,手書きのヒンディー文字をデバナガリ文字のイメージから抽出し,時間と時代遅れのデータを自動で保存することである。
本稿では,2つの深層畳み込みニューラルネットワーク層を用いて手書きのデバナガリ文字を認識する手法を提案する。
この研究は、認識率を高めるのに有用な方法論を採用し、効果的なデバナガリ手書き文字認識(DHTR)のための畳み込みニューラルネットワークを構成する。
このアプローチでは、Dedeanagari文字の36クラスのオープンデータセットであるDHCDを使用する。
これらのクラスはそれぞれ、トレーニングとテストの目的で1700のイメージを持っている。
このアプローチは、テストで96.36%、トレーニングで99.55%の精度で有望な結果を得る。
関連論文リスト
- Handwritten Digit Recognition: An Ensemble-Based Approach for Superior Performance [9.174021241188143]
本稿では,CNN(Convolutional Neural Networks)と従来の機械学習技術を組み合わせて,認識精度と堅牢性を向上させるアンサンブルに基づくアプローチを提案する。
我々は,70,000個の手書き桁画像からなるMNISTデータセットを用いて本手法の評価を行った。
特徴抽出にCNNを,分類にSVM(Support Vector Machines)を併用したハイブリッドモデルは,99.30%の精度を実現する。
論文 参考訳(メタデータ) (2025-03-08T07:09:49Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
本稿では,大規模テキストコーパスから言語知識を活用する手法を提案する。
シーンテキストデータセットとよく一致したテキスト分布を生成し、ドメイン内の微調整の必要性を取り除く。
実験結果から,本手法は認識精度を向上するだけでなく,単語のより正確な局所化を可能にすることが示された。
論文 参考訳(メタデータ) (2024-02-27T01:57:09Z) - Text-to-3D with Classifier Score Distillation [80.14832887529259]
クラシファイアフリーガイダンスは最も必須ではなく、補助的なトリックだと考えられている。
我々はこの手法をスコア蒸留 (CSD) と名付け, 生成のための暗黙の分類モデルを用いて解釈できる。
我々は,形状生成,テクスチャ合成,形状編集など,テキストから3Dまでの各種タスクにおけるCSDの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-30T10:25:40Z) - Optical Script Identification for multi-lingual Indic-script [0.0]
本論文の目的は,スクリプト前処理とテキスト認識技術の発展について論じることである。
インドには12の著名なIndicスクリプトがあり、英語とは異なり、これらのスクリプトには様々な特徴がある。
論文 参考訳(メタデータ) (2023-08-10T14:02:05Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
本稿では、深層学習技術を用いてクルド語アルファベットの文字を認識可能なモデルの設計と開発を試みる。
4000万枚以上の画像を含む、手書きのクルド文字のための包括的なデータセットが作成された。
結果,精度は96%,トレーニング精度は97%であった。
論文 参考訳(メタデータ) (2022-10-18T16:48:28Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - KOHTD: Kazakh Offline Handwritten Text Dataset [0.0]
広範囲にわたるカザフスタンのオフライン手書きテキストデータセット(KOHTD)を提案する。
KOHTDには3000枚の手書き試験用紙と140335枚以上の分割画像があり、約922010のシンボルがある。
我々は,CTC法や注意法など,単語・行認識に人気の高いテキスト認識手法を多用した。
論文 参考訳(メタデータ) (2021-09-22T16:19:38Z) - HCR-Net: A deep learning based script independent handwritten character
recognition network [5.8067395321424975]
手書き文字認識(HCR)は、数十年の研究にもかかわらず、困難なパターン認識問題である。
我々は、HCR研究のためのスクリプト独立型ディープラーニングネットワーク、HCR-Netを提案し、この分野の新たな研究方向性を定めている。
論文 参考訳(メタデータ) (2021-08-15T05:48:07Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
本稿では,現在の最先端手法の性能を向上させる新手法であるSmartPatchを提案する。
我々は、よく知られたパッチ損失と、平行訓練された手書きテキスト認識システムから収集された情報を組み合わせる。
これにより、より強化された局所識別器が実現し、より現実的で高品質な手書き文字が生成される。
論文 参考訳(メタデータ) (2021-05-21T18:34:21Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
手話は聴覚障害者や言語障害者のコミュニケーションに使用される。
また,RGB-D法と組み合わせて最先端の性能を実現することで,Skeletonに基づく音声認識が普及しつつある。
近年のボディポーズ推定用citejin 2020wholeの開発に触発されて,全身キーポイントと特徴に基づく手話認識を提案する。
論文 参考訳(メタデータ) (2021-03-16T03:38:17Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - Handwritten Script Identification from Text Lines [38.1188690493442]
テキスト行レベルで手書き文書からスクリプトを識別する頑健な手法を提案する。
チェインコードヒストグラム(CCH)と離散フーリエ変換(DFT)を用いて抽出した特徴に基づく。
提案手法は、グジャラート、カンナダ、マラヤラム、オリヤ、タミル、テルグ、ウルドゥーの7文字で書かれた800行の手書きのテキストに対して、ローマ文字とともに実験されている。
論文 参考訳(メタデータ) (2020-09-16T02:43:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。