Numerically Computing Galois Groups of Minimal Problems
- URL: http://arxiv.org/abs/2507.10407v1
- Date: Mon, 14 Jul 2025 15:53:58 GMT
- Title: Numerically Computing Galois Groups of Minimal Problems
- Authors: Timothy Duff,
- Abstract summary: I discuss a seemingly unlikely confluence of topics in algebra, numerical computation, and computer vision.<n>The motivating problem is that of solving multiples instances of a parametric family of systems of algebraic (polynomial or rational function) equations.
- Score: 3.4447129363520332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I discuss a seemingly unlikely confluence of topics in algebra, numerical computation, and computer vision. The motivating problem is that of solving multiples instances of a parametric family of systems of algebraic (polynomial or rational function) equations. No doubt already of interest to ISSAC attendees, this problem arises in the context of robust model-fitting paradigms currently utilized by the computer vision community (namely "Random Sampling and Consensus", aka "RanSaC".) This talk will give an overview of work in the last 5+ years that aspires to measure the intrinsic difficulty of solving such parametric systems, and makes strides towards practical solutions.
Related papers
- OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization [88.76091817642963]
Recent large-scale language models (LLMs) with long Chain-of-such reasoning as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics.<n>We introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a benchmark designed to evaluate three axes of out-of-distribution generalization.
arXiv Detail & Related papers (2025-06-23T17:51:40Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
We introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems.<n>The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction.<n>Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods.
arXiv Detail & Related papers (2025-03-04T06:32:30Z) - Explicit Solution Equation for Every Combinatorial Problem via Tensor Networks: MeLoCoToN [55.2480439325792]
We show that every computation problem has an exact explicit equation that returns its solution.<n>We present a method to obtain an equation that solves exactly any problem, both inversion, constraint satisfaction and optimization.
arXiv Detail & Related papers (2025-02-09T18:16:53Z) - A new family of ladder operators for macroscopic systems, with applications [0.0]
The role of bosonic and fermionic ladder operators in a macroscopic realm has been investigated.
We propose a possible alternative approach, again based on some sort of ladder operators, but for which an analytic solution can often be deduced without particular difficulties.
arXiv Detail & Related papers (2024-11-05T07:41:08Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
We propose Math CAMPS: a method to synthesize high-quality mathematical problems at scale.
We encode each standard in a formal grammar, allowing us to sample diverse symbolic problems and their answers.
We derive follow-up questions from symbolic structures and convert them into follow-up word problems.
arXiv Detail & Related papers (2024-07-01T01:56:28Z) - Symbolic Equation Solving via Reinforcement Learning [9.361474110798143]
We propose a novel deep-learning interface involving a reinforcement-learning agent that operates a symbolic stack calculator.
By construction, this system is capable of exact transformations and immune to hallucination.
arXiv Detail & Related papers (2024-01-24T13:42:24Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
This work extends the learning framework and implementation of a model-based approach for Answer Set Programming.
In particular, we incorporate a new conflict analysis algorithm in the Inductive Logic Programming system ILASP.
arXiv Detail & Related papers (2022-05-14T20:42:13Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
We propose a dataset, Machine Number Sense (MNS), consisting of visual arithmetic problems automatically generated using a grammar model--And-Or Graph (AOG)
These visual arithmetic problems are in the form of geometric figures.
We benchmark the MNS dataset using four predominant neural network models as baselines in this visual reasoning task.
arXiv Detail & Related papers (2020-04-25T17:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.