論文の概要: Energy Efficiency in AI for 5G and Beyond: A DeepRx Case Study
- arxiv url: http://arxiv.org/abs/2507.10409v1
- Date: Mon, 14 Jul 2025 15:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.359475
- Title: Energy Efficiency in AI for 5G and Beyond: A DeepRx Case Study
- Title(参考訳): 5G以上のAIにおけるエネルギー効率:DeepRxケーススタディ
- Authors: Amine Lbath, Ibtissam Labriji,
- Abstract要約: 本研究では、完全な畳み込みResNetアーキテクチャに基づくディープラーニング受信機DeepRXに着目し、AI/MLモデルの性能とエネルギー効率のバランスをとるという課題に対処する。
我々は、FLOPs/WattやFLOPs/clockなどの要因を考慮したDeepRXのエネルギー消費を評価し、推定エネルギー使用量と実際のエネルギー使用量との整合性を見出した。
重要な貢献は、知識蒸留(KD)を適用して、テキストチェッカーモデルの性能をエミュレートするコンパクトなDeepRXテキストチューデントモデルを訓練し、エネルギー消費を減らしたことである。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study addresses the challenge of balancing energy efficiency with performance in AI/ML models, focusing on DeepRX, a deep learning receiver based on a fully convolutional ResNet architecture. We evaluate the energy consumption of DeepRX, considering factors including FLOPs/Watt and FLOPs/clock, and find consistency between estimated and actual energy usage, influenced by memory access patterns. The research extends to comparing energy dynamics during training and inference phases. A key contribution is the application of knowledge distillation (KD) to train a compact DeepRX \textit{student} model that emulates the performance of the \textit{teacher} model but with reduced energy consumption. We experiment with different student model sizes, optimal teacher sizes, and KD hyperparameters. Performance is measured by comparing the Bit Error Rate (BER) performance versus Signal-to-Interference \& Noise Ratio (SINR) values of the distilled model and a model trained from scratch. The distilled models demonstrate a lower error floor across SINR levels, highlighting the effectiveness of KD in achieving energy-efficient AI solutions.
- Abstract(参考訳): 本研究では、完全な畳み込みResNetアーキテクチャに基づくディープラーニング受信機DeepRXに着目し、AI/MLモデルの性能とエネルギー効率のバランスをとるという課題に対処する。
我々は,FLOPs/WattやFLOPs/clockなどの要因を考慮したDeepRXのエネルギー消費を評価し,メモリアクセスパターンの影響を受け,推定と実際のエネルギー利用の整合性を見出した。
この研究は、トレーニングと推論フェーズにおけるエネルギー力学の比較にまで及んでいる。
重要な貢献は、知識蒸留(KD)を適用して、小型のDeepRX \textit{student}モデルを訓練することである。
我々は、学生モデルのサイズ、最適教師サイズ、KDハイパーパラメータを実験した。
蒸留モデルとスクラッチからトレーニングしたモデルのビット誤り率 (BER) と信号対干渉比 (SINR) の値を比較することで, 性能を測定した。
蒸留モデルでは、SINRレベルのエラーフロアが低く、エネルギー効率のよいAIソリューションを実現する上でのKDの有効性を強調している。
関連論文リスト
- SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution [55.14432034345353]
後続の超解像モデルの設計原理について検討し,その設計原理について検討する。
まず、ベースモデルの出力特性をよりよく模倣し、VSRモデルと上流ジェネレータとの整合性を確保するための2つのトレーニングペアを生成する方法を提案する。
第2に,(1)時間ステップサンプリング戦略,(2)低分解能(LR)入力に対する雑音増強効果の系統的解析を通じて,VSRモデル行動に対する批判的洞察を提供する。
論文 参考訳(メタデータ) (2025-06-24T17:57:26Z) - Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations [2.2765705959685234]
本研究では,実世界のMLOpsパイプラインにおける識別型および生成型AIモデルのエネルギー消費について検討する。
さまざまな構成、モデル、データセットにわたるレプリケーションの容易性を保証するために、ソフトウェアベースのパワー測定を採用しています。
論文 参考訳(メタデータ) (2025-03-31T10:28:04Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Ratio Divergence Learning Using Target Energy in Restricted Boltzmann Machines: Beyond Kullback--Leibler Divergence Learning [0.0]
本稿では,離散エネルギーモデルに対する比率分散(RD)学習を提案する。
RD学習は、前向きと逆向きのKullback-Leibler divergence(KLD)学習の強さを組み合わせる。
数値実験により、RD学習は他の学習方法よりもかなり優れていることが示された。
論文 参考訳(メタデータ) (2024-09-12T01:01:55Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLMは自動回帰言語モデルのためのより効率的で効率的なKDフレームワークである。
DisiLLMは,(1)新しいスキューKulback-Leibler分散損失,(2)学生生成出力の効率向上を目的とした適応型オフ政治アプローチの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-02-06T11:10:35Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Minimizing Energy Consumption of Deep Learning Models by Energy-Aware
Training [26.438415753870917]
モデル学習におけるエネルギー消費の削減を目的とした勾配に基づくアルゴリズムであるEATを提案する。
エネルギーを考慮したトレーニングアルゴリズムであるEATは、分類性能とエネルギー効率のトレードオフを良くしてネットワークをトレーニングできることを実証する。
論文 参考訳(メタデータ) (2023-07-01T15:44:01Z) - Uncovering Energy-Efficient Practices in Deep Learning Training:
Preliminary Steps Towards Green AI [8.025202812165412]
我々は、エネルギー消費を精度に等しい重要性の指標とみなし、無関係なタスクやエネルギー使用量を減らす。
持続可能性の観点から深層学習パイプラインの訓練段階について検討する。
ディープラーニングモデルをトレーニングするための革新的で有望なエネルギー効率のプラクティスを強調します。
論文 参考訳(メタデータ) (2023-03-24T12:48:21Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
ディープラーニングモデルの評価は、伝統的に精度、F1スコア、関連する指標などの基準に焦点を当ててきた。
このようなモデルを訓練するために必要な計算は、大きな炭素フットプリントを必要とする。
本研究では, DLモデルアーキテクチャと環境影響との関係を, エネルギー消費の観点から検討した。
論文 参考訳(メタデータ) (2023-02-02T09:20:54Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Reducing Capacity Gap in Knowledge Distillation with Review Mechanism
for Crowd Counting [16.65360204274379]
本稿では,KDモデルに基づく新たなレビュー機構について紹介する。
ReviewKDの有効性は、6つのベンチマークデータセットに対する一連の実験によって実証されている。
また,提案したレビュー機構をプラグイン・アンド・プレイモジュールとして使用することにより,ある種の大群カウントモデルの性能をさらに向上させることができることを示す。
論文 参考訳(メタデータ) (2022-06-11T09:11:42Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。