Nonlinear Quantum Sensing with a Frustrated Kitaev Trimer
- URL: http://arxiv.org/abs/2507.10418v1
- Date: Mon, 14 Jul 2025 16:00:50 GMT
- Title: Nonlinear Quantum Sensing with a Frustrated Kitaev Trimer
- Authors: C. Huerta Alderete, Anubhav Kumar Srivastava, Andrew T. Sornborger,
- Abstract summary: We investigate the response of a Ramsey interferometric quantum sensor based on a frustrated, three-spin system (a Kitaev trimer)<n>We show that the sensor's response to a zero-mean signal is such that below a threshold, $|vecb| b_mathrmth$, the sensor does not respond to the signal.<n>Such detectors could be useful both as standalone units for signal detection above a noise threshold and in two- or three-dimensional arrays, analogous to a quantum bubble chamber.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the response of a Ramsey interferometric quantum sensor based on a frustrated, three-spin system (a Kitaev trimer) to a classical time-dependent field (signal). The system eigenspectrum is symmetric about a critical point, $|\vec{b}| = 0$, with four of the spectral components varying approximately linearly with the magnetic field and four exhibiting a nonlinear dependence. Under the adiabatic approximation and for appropriate initial states, we show that the sensor's response to a zero-mean signal is such that below a threshold, $|\vec{b}| < b_\mathrm{th}$, the sensor does not respond to the signal, whereas above the threshold, the sensor acts as a detector that the signal has occurred. This thresholded response is approximately omnidirectional. Moreover, when deployed in an entangled multisensor configuration, the sensor achieves sensitivity at the Heisenberg limit. Such detectors could be useful both as standalone units for signal detection above a noise threshold and in two- or three-dimensional arrays, analogous to a quantum bubble chamber, for applications such as particle track detection and long-baseline telescopy.
Related papers
- Rydberg Atomic Quantum Receivers for Multi-Target DOA Estimation [77.32323151235285]
Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing.<n>We first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided wireless receiver for multi-target DOA detection and propose the corresponding signal model of this sensing system.<n>To solve this sensor gain mismatch problem, we propose the Rydberg atomic quantum ESPRIT (RAQ-ESPRIT) relying on our model.
arXiv Detail & Related papers (2025-01-06T07:42:23Z) - An Improved Bound on Nonlinear Quantum Mechanics using a Cryogenic Radio Frequency Experiment [41.48817643709061]
We set a new limit on the electromagnetic nonlinearity parameter $|epsilon| lessapprox 1.15 times 10-12$, at a 90.0% confidence level.
This is the most stringent limit on nonlinear quantum mechanics thus far and an improvement by nearly a factor of 50 over the previous experimental limit.
arXiv Detail & Related papers (2024-11-14T17:31:33Z) - Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.<n>We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.<n>We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Correlated sensing with a solid-state quantum multi-sensor system for
atomic-scale structural analysis [14.301219154831964]
We develop a novel sensing paradigm exploiting the signal correlation among multiple quantum sensors.
With three nitrogen-vacancy centers as a quantum electrometer system, we demonstrate this multi-sensor paradigm.
We obtain the real-time charge dynamics of individual point defects and visualize how the dynamics induce the well-known optical spectral diffusion.
arXiv Detail & Related papers (2024-01-04T08:26:20Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Quantum-assisted Distortion-free audio signal sensing [2.530512865260924]
We develop a quantum-assisted distortion-free audio signal (melody, speech) sensing with high fidelity.
The methods could broaden the horizon for quantum sensors towards applications in telecommunication.
arXiv Detail & Related papers (2021-11-07T14:40:58Z) - Exceptional precision of a nonlinear optical sensor at a square-root
singularity [0.0]
We propose a single-mode Kerr-nonlinear resonator for exceptional sensing in noisy environments.
Our sensor has a signal-to-noise ratio that increases with the measurement speed, and a precision enhanced at the square-root singularity.
Remarkably, averaging the signal can quickly enhance and then degrade the precision.
arXiv Detail & Related papers (2021-07-02T22:10:36Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Quantum Sensing of Intermittent Stochastic Signals [0.0]
We investigate how the number of sensors and fidelity affect sensitivity to continuous and intermittent signals.
We find that increasing the number of sensors by $1/F2$ for $F1$ always recovers the sensitivity achieved when $F=1$.
We also demonstrate the importance of near-unity control fidelity and readout at the quantum projection noise limit.
arXiv Detail & Related papers (2020-10-07T22:25:18Z) - Versatile Atomic Magnetometry Assisted by Bayesian Inference [0.0]
Quantum sensors translate external fields into a periodic response whose frequency is then determined by analyses performed in Fourier space.
In practice, however, quantum sensors are able to detect fields only in a narrow range of amplitudes and frequencies.
A departure from this range, as well as the presence of significant noise sources and short detection times, lead to a loss of the linear relationship between the response of the sensor and the target field.
arXiv Detail & Related papers (2020-03-04T16:01:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.