SentiDrop: A Multi Modal Machine Learning model for Predicting Dropout in Distance Learning
- URL: http://arxiv.org/abs/2507.10421v1
- Date: Mon, 14 Jul 2025 16:04:34 GMT
- Title: SentiDrop: A Multi Modal Machine Learning model for Predicting Dropout in Distance Learning
- Authors: Meriem Zerkouk, Miloud Mihoubi, Belkacem Chikhaoui,
- Abstract summary: School dropout is a serious problem in distance learning, where early detection is crucial for effective intervention and student perseverance.<n>We introduce a novel model that combines sentiment analysis of student comments using the Bidirectional Representations from Transformers (BERT) model.<n>Our model was tested on unseen data from the next academic year, achieving an accuracy of 84%, compared to 82% for the baseline model.
- Score: 0.4369550829556578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: School dropout is a serious problem in distance learning, where early detection is crucial for effective intervention and student perseverance. Predicting student dropout using available educational data is a widely researched topic in learning analytics. Our partner's distance learning platform highlights the importance of integrating diverse data sources, including socio-demographic data, behavioral data, and sentiment analysis, to accurately predict dropout risks. In this paper, we introduce a novel model that combines sentiment analysis of student comments using the Bidirectional Encoder Representations from Transformers (BERT) model with socio-demographic and behavioral data analyzed through Extreme Gradient Boosting (XGBoost). We fine-tuned BERT on student comments to capture nuanced sentiments, which were then merged with key features selected using feature importance techniques in XGBoost. Our model was tested on unseen data from the next academic year, achieving an accuracy of 84\%, compared to 82\% for the baseline model. Additionally, the model demonstrated superior performance in other metrics, such as precision and F1-score. The proposed method could be a vital tool in developing personalized strategies to reduce dropout rates and encourage student perseverance
Related papers
- Predicting Student Dropout Risk With A Dual-Modal Abrupt Behavioral Changes Approach [11.034576265432168]
The Dual-Modal Multiscale Sliding Window (DMSW) Model integrates academic performance and behavioral data to capture behavior patterns using minimal data.<n>The DMSW model improves prediction accuracy by 15% compared to traditional methods, enabling educators to identify high-risk students earlier.<n>These findings bridge the gap between theory and practice in dropout prediction, giving educators an innovative tool to enhance student retention and outcomes.
arXiv Detail & Related papers (2025-05-16T11:02:55Z) - Ranking-Based At-Risk Student Prediction Using Federated Learning and Differential Features [4.21051987964486]
This study proposes a method that combines federated learning and differential features to address privacy concerns.<n>To evaluate the proposed method, a model for predicting at-risk students was trained using data from 1,136 students across 12 courses conducted over 4 years.<n>The trained models were also applicable for early prediction, achieving high performance in detecting at-risk students in earlier stages of the semester.
arXiv Detail & Related papers (2025-05-14T11:12:30Z) - Modeling Behavior Change for Multi-model At-Risk Students Early Prediction (extended version) [10.413751893289056]
Current models primarily identify students with consistently poor performance through simple and discrete behavioural patterns.<n>We have developed an innovative prediction model, Multimodal- ChangePoint Detection (MCPD), utilizing the textual teacher remark data and numerical grade data from middle schools.<n>Our model achieves an accuracy range of 70- 75%, with an average outperforming baseline algorithms by approximately 5-10%.
arXiv Detail & Related papers (2025-02-19T11:16:46Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Customizing Synthetic Data for Data-Free Student Learning [6.8080936803807734]
DFKD aims to obtain a lightweight student model without original training data.
To more effectively train the student model, synthetic data shall be customized to the current student learning ability.
We propose Customizing Synthetic Data for Data-Free Student Learning (CSD) in this paper.
arXiv Detail & Related papers (2023-07-10T13:17:29Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Understanding Robustness in Teacher-Student Setting: A New Perspective [42.746182547068265]
Adrial examples are machine learning models where bounded adversarial perturbation could mislead the models to make arbitrarily incorrect predictions.
Extensive studies try to explain the existence of adversarial examples and provide ways to improve model robustness.
Our studies could shed light on the future exploration about adversarial examples, and enhancing model robustness via principled data augmentation.
arXiv Detail & Related papers (2021-02-25T20:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.