論文の概要: From BERT to Qwen: Hate Detection across architectures
- arxiv url: http://arxiv.org/abs/2507.10468v1
- Date: Mon, 14 Jul 2025 16:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.551931
- Title: From BERT to Qwen: Hate Detection across architectures
- Title(参考訳): BERTからQwenへ:アーキテクチャ間のヘイト検出
- Authors: Ariadna Mon, Saúl Fenollosa, Jon Lecumberri,
- Abstract要約: 自己回帰LLMは、より深いコンテキスト認識を約束します。
本研究は,古典エンコーダと次世代LLMの両方を,ハト・音声検出のためのオンラインインタラクションのコーパスとして評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online platforms struggle to curb hate speech without over-censoring legitimate discourse. Early bidirectional transformer encoders made big strides, but the arrival of ultra-large autoregressive LLMs promises deeper context-awareness. Whether this extra scale actually improves practical hate-speech detection on real-world text remains unverified. Our study puts this question to the test by benchmarking both model families, classic encoders and next-generation LLMs, on curated corpora of online interactions for hate-speech detection (Hate or No Hate).
- Abstract(参考訳): オンラインプラットフォームは、合法的な言論を過度に検閲することなくヘイトスピーチを抑えるのに苦労している。
初期の双方向トランスフォーマーエンコーダは大きな進歩を遂げたが、超大型の自己回帰LDMの登場は、より深い文脈認識を約束する。
この余分なスケールで現実のテキストのヘイトスピーチ検出が実際に改善されるかどうかは、まだ検証されていない。
本研究は, モデルファミリー, 古典エンコーダ, 次世代LLMの双方を, ヘイト・音声検出のためのオンラインインタラクションコーパス(Hate or No Hate)のキュレートしたコーパスのベンチマークにより, この問題を検証した。
関連論文リスト
- Cracking the Code: Enhancing Implicit Hate Speech Detection through Coding Classification [14.71617865049465]
我々は,Im-HS検出のための新しい分類法を導入し,コードタイプと呼ばれる6つの符号化戦略を定義した。
実験により、コードタイプを使用することで、中国語と英語の両方のデータセットにおける即時HS検出が向上することが示された。
論文 参考訳(メタデータ) (2025-06-05T07:15:21Z) - Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model [76.06585781346601]
音声言語モデル(Speech LMs)は、単一のモデル内でエンドツーエンドの音声テキストモデリングを可能にする。
音声テキストの共同復号パラダイムの選択は、性能、効率、アライメント品質において重要な役割を担っている。
論文 参考訳(メタデータ) (2025-06-04T23:53:49Z) - Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study [59.30098850050971]
この研究は、8つの非英語言語にわたるLLMのプロンプトに基づく検出を評価する。
実世界の評価セットのほとんどにおいて、ゼロショットと少数ショットが微調整エンコーダモデルに遅れを生じさせる一方で、ヘイトスピーチ検出のための関数的テストのより優れた一般化を実現していることを示す。
論文 参考訳(メタデータ) (2025-05-09T16:00:01Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
本稿では,ペア音声とテキストコーパスを使わずにASRシステムを開発するという課題に取り組む。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
この革新的なモデルは、レキシコンフリー環境下での以前の教師なしASRモデルの性能を上回る。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning [29.519687405350304]
本稿では,大規模言語モデル(LLM)の推論能力を利用して,ヘイトスピーチの説明のギャップを埋めるヘイトスピーチ検出フレームワークHAREを紹介する。
SBICとImplicit Hateベンチマークの実験では、モデル生成データを用いた手法がベースラインを一貫して上回ることを示した。
提案手法は,訓練されたモデルの説明品質を高め,未知のデータセットへの一般化を改善する。
論文 参考訳(メタデータ) (2023-11-01T06:09:54Z) - HateRephrase: Zero- and Few-Shot Reduction of Hate Intensity in Online
Posts using Large Language Models [4.9711707739781215]
本稿では,投稿前にもヘイトスピーチ内容の表現を示唆するアプローチについて検討する。
タスク記述、ヘイト定義、数発のデモ、思考の連鎖に基づく4つの異なるプロンプトを開発する。
GPT-3.5は,様々な種類のプロンプトに対して,ベースラインモデルやオープンソースモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:18:29Z) - Revisiting Hate Speech Benchmarks: From Data Curation to System
Deployment [26.504056750529124]
GOTHateは、Twitterからヘイトスピーチを検出するために約51万の投稿をクラウドソースした大規模クラウドソースデータセットである。
最近の10のベースラインでベンチマークを行い、内因性信号の追加がヘイトスピーチ検出タスクをどのように強化するかを検討する。
我々のHEN-mBERTは多言語混合実験モデルであり、潜在内因性信号で言語的部分空間を豊かにする。
論文 参考訳(メタデータ) (2023-06-01T19:36:52Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
実験の結果、Bidirectional LSTMベースのディープモデルによるドメイン固有単語の埋め込みは93%のf1スコアを獲得し、BERTは96%のf1スコアを達成した。
論文 参考訳(メタデータ) (2021-11-02T11:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。