論文の概要: MLAR: Multi-layer Large Language Model-based Robotic Process Automation Applicant Tracking
- arxiv url: http://arxiv.org/abs/2507.10472v1
- Date: Mon, 14 Jul 2025 16:53:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.557957
- Title: MLAR: Multi-layer Large Language Model-based Robotic Process Automation Applicant Tracking
- Title(参考訳): MLAR:多層大規模言語モデルに基づくロボットプロセス自動化アプリケーション追跡
- Authors: Mohamed T. Younes, Omar Walid, Mai Hassan, Ali Hamdi,
- Abstract要約: 本稿では、新しいロボットプロセス自動化(RPA)フレームワークによって強化された革新的なアプリケーショントラッキングシステム(ATS)を紹介し、さらにMLARと呼ぶ。
MLARは、大きな言語モデル(LLM)を3つの異なるレイヤで採用するこれらの課題に対処する。第1層の求職から重要な特徴を抽出し、第2層の教育、経験、第2層のスキル、第3層の類似性マッチングをパースする。
我々のアプローチは既存のRPAパイプラインにシームレスに統合され、履歴解析、ジョブマッチング、候補通知を自動化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces an innovative Applicant Tracking System (ATS) enhanced by a novel Robotic process automation (RPA) framework or as further referred to as MLAR. Traditional recruitment processes often encounter bottlenecks in resume screening and candidate shortlisting due to time and resource constraints. MLAR addresses these challenges employing Large Language Models (LLMs) in three distinct layers: extracting key characteristics from job postings in the first layer, parsing applicant resume to identify education, experience, skills in the second layer, and similarity matching in the third layer. These features are then matched through advanced semantic algorithms to identify the best candidates efficiently. Our approach integrates seamlessly into existing RPA pipelines, automating resume parsing, job matching, and candidate notifications. Extensive performance benchmarking shows that MLAR outperforms the leading RPA platforms, including UiPath and Automation Anywhere, in high-volume resume-processing tasks. When processing 2,400 resumes, MLAR achieved an average processing time of 5.4 seconds per resume, reducing processing time by approximately 16.9% compared to Automation Anywhere and 17.1% compared to UiPath. These results highlight the potential of MLAR to transform recruitment workflows by providing an efficient, accurate, and scalable solution tailored to modern hiring needs.
- Abstract(参考訳): 本稿では、新しいロボットプロセス自動化(RPA)フレームワークによって強化された革新的なアプリケーショントラッキングシステム(ATS)を紹介し、さらにMLARと呼ぶ。
伝統的な採用プロセスは、時間とリソースの制約により、再開のスクリーニングや候補のショートリストにおいてボトルネックに遭遇することが多い。
MLARは、大きな言語モデル(LLM)を3つの異なるレイヤで採用するこれらの課題に対処する。第1層の求職から重要な特徴を抽出し、第2層の教育、経験、第2層のスキル、第3層の類似性マッチングをパースする。
これらの機能は高度なセマンティックアルゴリズムによってマッチングされ、最適な候補を効率的に識別する。
我々のアプローチは既存のRPAパイプラインにシームレスに統合され、履歴解析、ジョブマッチング、候補通知を自動化する。
大規模なパフォーマンスベンチマークによると、MLARは、高ボリュームの履歴処理タスクにおいて、UiPathやAutomance Anywhereを含む主要なRPAプラットフォームよりもパフォーマンスが高い。
2400回の履歴処理では、MLARは1回の履歴処理で平均5.4秒の処理時間を達成し、Automration Anywhereに比べて処理時間を約16.9%削減し、UiPathより17.1%削減した。
これらの結果は、現代的な採用ニーズに合わせて効率的で正確でスケーラブルなソリューションを提供することによって、MLARが採用ワークフローを変革する可能性を強調している。
関連論文リスト
- AI Hiring with LLMs: A Context-Aware and Explainable Multi-Agent Framework for Resume Screening [12.845918958645676]
大規模言語モデル(LLM)を用いたスクリーニング再開のためのマルチエージェントフレームワークを提案する。
フレームワークは、履歴抽出器、評価器、要約器、スコアフォーマッターを含む4つのコアエージェントから構成される。
この動的適応は、パーソナライズされた採用を可能にし、AI自動化と人材獲得のギャップを埋める。
論文 参考訳(メタデータ) (2025-04-01T12:56:39Z) - From Text to Talent: A Pipeline for Extracting Insights from Candidate Profiles [44.38380596387969]
本稿では,大規模言語モデルとグラフ類似度を利用した新たなパイプラインを提案する。
提案手法は, 候補プロファイルをマルチモーダルな埋め込みとして表現し, 求人要件と候補属性の微妙な関係を捕捉する。
論文 参考訳(メタデータ) (2025-03-21T16:18:44Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
自動プロンプト工学(APE)のための新しいフレームワーク LLM-AutoDiff について紹介する。
LLMs-AutoDiffは、各テキスト入力をトレーニング可能なパラメータとして扱い、フリーズした後方エンジンを使用して、テキスト勾配に対するフィードバック・アキンを生成する。
精度とトレーニングコストの両方において、既存のテキスト勾配ベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2025-01-28T03:18:48Z) - Forecasting Application Counts in Talent Acquisition Platforms: Harnessing Multimodal Signals using LMs [5.7623855432001445]
本稿では,採用領域における新たな課題,すなわちアプリケーション数予測について論じる。
本稿では,既存の自己回帰型時系列予測手法が,この課題に対して不十分であることを示す。
簡単なエンコーダを用いて,様々なモダリティの求人メタデータを融合したマルチモーダルLMモデルを提案する。
論文 参考訳(メタデータ) (2024-11-19T01:18:32Z) - Multi-agent Path Finding for Timed Tasks using Evolutionary Games [1.3023548510259344]
我々のアルゴリズムは,少なくとも1桁の精度で深部RL法よりも高速であることを示す。
以上の結果から,他の方法と比較してエージェント数の増加にともなってスケールが向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T20:10:25Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - APEER: Automatic Prompt Engineering Enhances Large Language Model Reranking [39.649879274238856]
APEERという新しい自動プロンプトエンジニアリングアルゴリズムを導入する。
APEERはフィードバックと好みの最適化を通じて改良されたプロンプトを反復的に生成する。
APEERが生成するプロンプトは,多種多様なタスクやLLM間で高い転送性を示す。
論文 参考訳(メタデータ) (2024-06-20T16:11:45Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening [0.0]
本稿では,新しいLarge Language Models (LLM) ベースのエージェントフレームワークについて紹介する。
我々のフレームワークは、大規模なデータセットから各履歴を効率的に要約し、評価する能力において、異なる。
その結果,自動再試行フレームワークは従来の手作業よりも11倍高速であることがわかった。
論文 参考訳(メタデータ) (2024-01-16T12:30:56Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - Learning Task Automata for Reinforcement Learning using Hidden Markov
Models [37.69303106863453]
本稿では,非マルコフ型タスク仕様を簡潔な有限状態タスクオートマトンとして学習するための新しいパイプラインを提案する。
我々は,その製品 MDP を部分的に観測可能な MDP として扱い,よく知られた Baum-Welch アルゴリズムを用いて隠れマルコフモデルを学習することで,仕様のオートマトンと環境の MDP からなるモデルである製品 MDP を学習する。
我々の学習タスクオートマトンはタスクをその構成サブタスクに分解し、RLエージェントが後に最適なポリシーを合成できる速度を改善する。
論文 参考訳(メタデータ) (2022-08-25T02:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。