REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
- URL: http://arxiv.org/abs/2507.10541v2
- Date: Tue, 15 Jul 2025 06:16:53 GMT
- Title: REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
- Authors: Zhuoshi Pan, Qizhi Pei, Yu Li, Qiyao Sun, Zinan Tang, H. Vicky Zhao, Conghui He, Lijun Wu,
- Abstract summary: We present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that exposes Large Reasoning Models to multiple problems simultaneously.<n>Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing.
- Score: 33.049237516125146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation. Code and results are available at https://opendatalab.github.io/REST.
Related papers
- VAR-MATH: Probing True Mathematical Reasoning in Large Language Models via Symbolic Multi-Instance Benchmarks [25.295071827427677]
emphbenchmark contamination arises from the public availability of test problems.<n>emphevaluation fragility stems from the reliance on single-instance assessments.<n>IME-MATH is a symbolic evaluation framework designed to probe genuine reasoning ability.
arXiv Detail & Related papers (2025-07-17T08:10:55Z) - Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination [67.67725938962798]
Pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks.<n>We introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation.<n>We show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary.
arXiv Detail & Related papers (2025-07-14T17:55:15Z) - Dissecting Long Reasoning Models: An Empirical Study [94.31064312707211]
We systematically analyze the roles of positive and negative samples in reinforcement learning (RL)<n>We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage.<n>We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes.
arXiv Detail & Related papers (2025-06-05T11:47:10Z) - T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation [60.620408007636016]
We propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores.<n>Our approach integrates Group Relative Policy Optimization into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains.
arXiv Detail & Related papers (2025-05-23T13:44:59Z) - The Emperor's New Clothes in Benchmarking? A Rigorous Examination of Mitigation Strategies for LLM Benchmark Data Contamination [18.05548914181797]
Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation.<n>To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them.<n>Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions.
arXiv Detail & Related papers (2025-03-20T17:55:04Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
Existing robust benchmark datasets have two key limitations.<n>They generate only a limited range of perturbations for a single Information Extraction (IE) task.<n>Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench.<n>We show that training with only textbf15% of the data leads to an average textbf7.5% relative performance improvement across three IE tasks.
arXiv Detail & Related papers (2025-03-05T05:39:29Z) - LR^2Bench: Evaluating Long-chain Reflective Reasoning Capabilities of Large Language Models via Constraint Satisfaction Problems [7.379503137362718]
We introduce LR$2$Bench, a novel benchmark designed to evaluate the Long-chain Reflective Reasoning capabilities of Large Language Models.<n>Our evaluation reveals that even the most advanced LRMs, such as DeepSeek-R1 and OpenAI o1-preview, struggle with tasks in LR$2$Bench.
arXiv Detail & Related papers (2025-02-25T04:51:17Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
We present the first theoretical error decomposition analysis of methods such as perplexity and self-consistency.<n>Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function.<n>We propose Reasoning-Pruning Perplexity Consistency (RPC), which integrates perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths.
arXiv Detail & Related papers (2025-02-01T18:09:49Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.<n>Our research identifies two critical latent factors affecting RAG's confidence in its predictions.<n>We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Deep anytime-valid hypothesis testing [29.273915933729057]
We propose a general framework for constructing powerful, sequential hypothesis tests for nonparametric testing problems.
We develop a principled approach of leveraging the representation capability of machine learning models within the testing-by-betting framework.
Empirical results on synthetic and real-world datasets demonstrate that tests instantiated using our general framework are competitive against specialized baselines.
arXiv Detail & Related papers (2023-10-30T09:46:19Z) - Position: AI Evaluation Should Learn from How We Test Humans [65.36614996495983]
We argue that psychometrics, a theory originating in the 20th century for human assessment, could be a powerful solution to the challenges in today's AI evaluations.
arXiv Detail & Related papers (2023-06-18T09:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.