Transforming Sensitive Documents into Quantitative Data: An AI-Based Preprocessing Toolchain for Structured and Privacy-Conscious Analysis
- URL: http://arxiv.org/abs/2507.10582v1
- Date: Fri, 11 Jul 2025 11:58:36 GMT
- Title: Transforming Sensitive Documents into Quantitative Data: An AI-Based Preprocessing Toolchain for Structured and Privacy-Conscious Analysis
- Authors: Anders Ledberg, Anna Thalén,
- Abstract summary: Large-scale analysis is hampered by the presence of sensitive, personally identifiable information.<n>We present a modular toolchain that prepares such text data for embedding-based analysis.<n>We demonstrate the toolchain on a corpus of 10,842 Swedish court decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unstructured text from legal, medical, and administrative sources offers a rich but underutilized resource for research in public health and the social sciences. However, large-scale analysis is hampered by two key challenges: the presence of sensitive, personally identifiable information, and significant heterogeneity in structure and language. We present a modular toolchain that prepares such text data for embedding-based analysis, relying entirely on open-weight models that run on local hardware, requiring only a workstation-level GPU and supporting privacy-sensitive research. The toolchain employs large language model (LLM) prompting to standardize, summarize, and, when needed, translate texts to English for greater comparability. Anonymization is achieved via LLM-based redaction, supplemented with named entity recognition and rule-based methods to minimize the risk of disclosure. We demonstrate the toolchain on a corpus of 10,842 Swedish court decisions under the Care of Abusers Act (LVM), comprising over 56,000 pages. Each document is processed into an anonymized, standardized summary and transformed into a document-level embedding. Validation, including manual review, automated scanning, and predictive evaluation shows the toolchain effectively removes identifying information while retaining semantic content. As an illustrative application, we train a predictive model using embedding vectors derived from a small set of manually labeled summaries, demonstrating the toolchain's capacity for semi-automated content analysis at scale. By enabling structured, privacy-conscious analysis of sensitive documents, our toolchain opens new possibilities for large-scale research in domains where textual data was previously inaccessible due to privacy and heterogeneity constraints.
Related papers
- Re-Initialization Token Learning for Tool-Augmented Large Language Models [49.91503552002649]
Large language models have demonstrated exceptional performance, yet struggle with complex tasks such as numerical reasoning, plan generation.<n>We propose a novel token learning method that aligns tool tokens with the existing word embedding space.<n>We evaluate the method on tasks such as numerical reasoning, knowledge-based question answering, and embodied plan generation using GSM8K-XL, FuncQA, KAMEL, and VirtualHome datasets.
arXiv Detail & Related papers (2025-06-17T07:11:00Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.<n>We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Anonymizing text that contains sensitive information is crucial for a wide range of applications.<n>Existing techniques face the emerging challenges of the re-identification ability of large language models.<n>We propose a framework composed of three key components: a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - What's In My Big Data? [67.04525616289949]
We propose What's In My Big Data? (WIMBD), a platform and a set of sixteen analyses that allow us to reveal and compare the contents of large text corpora.
WIMBD builds on two basic capabilities -- count and search -- at scale, which allows us to analyze more than 35 terabytes on a standard compute node.
Our analysis uncovers several surprising and previously undocumented findings about these corpora, including the high prevalence of duplicate, synthetic, and low-quality content.
arXiv Detail & Related papers (2023-10-31T17:59:38Z) - Leveraging Contextual Information for Effective Entity Salience Detection [21.30389576465761]
We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches.
We also show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.
arXiv Detail & Related papers (2023-09-14T19:04:40Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - Transforming Unstructured Text into Data with Context Rule Assisted
Machine Learning (CRAML) [0.0]
The Context Rule Assisted Machine Learning (CRAML) method allows accurate and reproducible labeling of massive volumes of unstructured text.
CRAML enables domain experts to access uncommon constructs buried within a document corpus.
We present three use cases for CRAML: we analyze recent management literature that draws from text data, describe and release new machine learning models from an analysis of proprietary job advertisement text, and present findings of social and economic interest from a public corpus of franchise documents.
arXiv Detail & Related papers (2023-01-20T13:12:35Z) - GLEAKE: Global and Local Embedding Automatic Keyphrase Extraction [1.0681288493631977]
We introduce Global and Local Embedding Automatic Keyphrase Extractor (GLEAKE) for the task of automatic keyphrase extraction.
GLEAKE uses single and multi-word embedding techniques to explore the syntactic and semantic aspects of the candidate phrases.
It refines the most significant phrases as a final set of keyphrases.
arXiv Detail & Related papers (2020-05-19T20:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.