論文の概要: A Taxonomy for Design and Evaluation of Prompt-Based Natural Language Explanations
- arxiv url: http://arxiv.org/abs/2507.10585v1
- Date: Fri, 11 Jul 2025 12:52:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.751263
- Title: A Taxonomy for Design and Evaluation of Prompt-Based Natural Language Explanations
- Title(参考訳): プロンプトに基づく自然言語記述の設計と評価のための分類法
- Authors: Isar Nejadgholi, Mona Omidyeganeh, Marc-Antoine Drouin, Jonathan Boisvert,
- Abstract要約: 我々は、説明可能なAI文献に基づいて、プロンプトベースのNLEに適応した、更新されたXAI分類を作成する。
この分類は、研究者、監査官、政策立案者が透明なAIシステムのためにNLEを特徴づけ、設計し、拡張するためのフレームワークを提供する。
- 参考スコア(独自算出の注目度): 5.843765076247934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective AI governance requires structured approaches for stakeholders to access and verify AI system behavior. With the rise of large language models, Natural Language Explanations (NLEs) are now key to articulating model behavior, which necessitates a focused examination of their characteristics and governance implications. We draw on Explainable AI (XAI) literature to create an updated XAI taxonomy, adapted to prompt-based NLEs, across three dimensions: (1) Context, including task, data, audience, and goals; (2) Generation and Presentation, covering generation methods, inputs, interactivity, outputs, and forms; and (3) Evaluation, focusing on content, presentation, and user-centered properties, as well as the setting of the evaluation. This taxonomy provides a framework for researchers, auditors, and policymakers to characterize, design, and enhance NLEs for transparent AI systems.
- Abstract(参考訳): 効果的なAIガバナンスは、利害関係者がAIシステムの振る舞いにアクセスし検証するための構造化されたアプローチを必要とする。
大規模言語モデルの台頭に伴い、自然言語説明(NLE)はモデル行動を明確にするための鍵となり、それらの特性とガバナンスの影響を集中的に調べる必要がある。
1)タスク,データ,オーディエンス,目標を含むコンテキスト,(2)生成と提示,生成方法,入力,対話性,出力,フォーム,(3)コンテンツ,プレゼンテーション,ユーザ中心のプロパティ,および評価の設定。
この分類は、研究者、監査官、政策立案者が透明なAIシステムのためにNLEを特徴づけ、設計し、拡張するためのフレームワークを提供する。
関連論文リスト
- Analyzing Feedback Mechanisms in AI-Generated MCQs: Insights into Readability, Lexical Properties, and Levels of Challenge [0.0]
本研究は,Google の Gemini 1.5-flash テキストモデルが生成するフィードバックの言語的および構造的特性を,コンピュータサイエンスのマルチチョイス質問(MCQ)に適用するものである。
長,可読性スコア(フレッシュ・キンケイド級),語彙の豊かさ,語彙密度などの主要な言語指標を算出し,検討した。
この結果から, 多様な教育的文脈におけるAI生成フィードバックの動的適応を実証し, フィードバックトーンと質問難易度の間に有意な相互作用効果が認められた。
論文 参考訳(メタデータ) (2025-04-19T09:20:52Z) - SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
本稿では,新たな評価手法であるSCENE(Soft Counterfactual Evaluation for Natural Language Explainability)を紹介する。
トークンベースの置換に焦点を当てることで、SCENEは文脈的に適切で意味論的に意味のあるソフトカウンタブルを作成する。
SCENEは様々なXAI技法の強みと限界についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T16:36:24Z) - Challenges and Opportunities in Text Generation Explainability [12.089513278445704]
本稿では,説明可能性手法の開発と評価において生じる3つのグループに分類される17の課題について概説する。
これらの課題には、トークン化、説明の類似性の定義、トークンの重要性の決定と予測変更メトリクス、人間の介入のレベル、適切なテストデータセットの作成などが含まれる。
この論文は、これらの課題がコミュニティにとっての新たな機会として、どのように絡み合うことができるかを説明している。
論文 参考訳(メタデータ) (2024-05-14T09:44:52Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing [0.5266869303483376]
レビューでは、各タスクを体系的に導入し、キーアーキテクチャをリカレントニューラルネットワーク(RNN)からBERTのようなトランスフォーマーベースのモデルに記述する。
アンサンブル技術の適用性を強調し、様々なNLPアプリケーションを強化する能力を強調している。
計算オーバーヘッド、オーバーフィッティング、モデル解釈複雑性などの実装上の課題に対処する。
論文 参考訳(メタデータ) (2023-12-09T14:49:34Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution [48.86322922826514]
本稿では,知識認識型言語モデル属性(KaLMA)の新たな課題について述べる。
まず、属性のソースを構造化されていないテキストから知識グラフ(KG)に拡張し、そのリッチな構造は属性のパフォーマンスと作業シナリオの両方に役立ちます。
第2に,不完全な知識リポジトリを考慮した「意識的非能力」の設定を提案する。
第3に,テキスト品質,引用品質,引用アライメントを含む総合的な自動評価指標を提案する。
論文 参考訳(メタデータ) (2023-10-09T11:45:59Z) - Towards Feasible Counterfactual Explanations: A Taxonomy Guided
Template-based NLG Method [0.5003525838309206]
対実的説明 (cf-XAI) は、あるクラスから別のクラスへ結果を変更するのに必要な特徴値の最小限の変更を記述する。
多くのcf-XAI法はこれらの変化の可能性を無視している。
自然言語におけるcf-XAI提示のための新しいアプローチ(Natural-XAI)を提案する。
論文 参考訳(メタデータ) (2023-10-03T12:48:57Z) - Situated Natural Language Explanations [54.083715161895036]
自然言語の説明(NLE)は、人間に意思決定を説明する最もアクセスしやすいツールである。
既存のNLE研究の視点は、観客を考慮に入れない。
Situated NLEは視点を提供し、説明の生成と評価に関するさらなる研究を促進する。
論文 参考訳(メタデータ) (2023-08-27T14:14:28Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。