Flows and Diffusions on the Neural Manifold
- URL: http://arxiv.org/abs/2507.10623v1
- Date: Mon, 14 Jul 2025 02:26:06 GMT
- Title: Flows and Diffusions on the Neural Manifold
- Authors: Daniel Saragih, Deyu Cao, Tejas Balaji,
- Abstract summary: Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling.<n>We extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling. In this work, we extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics. Central to our approach is modeling the trajectory induced by gradient descent as a trajectory inference problem. We unify several trajectory inference techniques under the framework of gradient flow matching, providing a theoretical framework for treating optimization paths as inductive bias. We further explore architectural and algorithmic choices, including reward fine-tuning by adjoint matching, the use of autoencoders for latent weight representation, conditioning on task-specific context data, and adopting informative source distributions such as Kaiming uniform. Experiments demonstrate that our method matches or surpasses baselines in generating in-distribution weights, improves initialization for downstream training, and supports fine-tuning to enhance performance. Finally, we illustrate a practical application in safety-critical systems: detecting harmful covariate shifts, where our method outperforms the closest comparable baseline.
Related papers
- Aligning Latent Spaces with Flow Priors [72.24305287508474]
This paper presents a novel framework for aligning learnable latent spaces to arbitrary target distributions by leveraging flow-based generative models as priors.<n> Notably, the proposed method eliminates computationally expensive likelihood evaluations and avoids ODE solving during optimization.
arXiv Detail & Related papers (2025-06-05T16:59:53Z) - Directional Gradient Projection for Robust Fine-Tuning of Foundation Models [25.04763038570959]
Directional Gradient Projection (DiGraP) is a layer-wise trainable method that incorporates directional information from gradients to bridge regularization and multi-objective optimization.<n>We first bridge the uni-modal and multi-modal gap by performing analysis on Image Classification reformulated Visual Question Answering (VQA) benchmarks.<n> Experimental results show that DiGraP consistently outperforms existing baselines across Image Classfication and VQA tasks with discriminative and generative backbones.
arXiv Detail & Related papers (2025-02-21T19:31:55Z) - Diffusion-Sharpening: Fine-tuning Diffusion Models with Denoising Trajectory Sharpening [56.99266993852532]
Diffusion-Sharpening is a fine-tuning approach that enhances downstream alignment by optimizing sampling trajectories.<n>Our method demonstrates superior training efficiency with faster convergence, and best inference efficiency without requiring additional NFEs.
arXiv Detail & Related papers (2025-02-17T18:57:26Z) - A First-order Generative Bilevel Optimization Framework for Diffusion Models [57.40597004445473]
Diffusion models iteratively denoise data samples to synthesize high-quality outputs.<n>Traditional bilevel methods fail due to infinite-dimensional probability space and prohibitive sampling costs.<n>We formalize this challenge as a generative bilevel optimization problem.<n>Our first-order bilevel framework overcomes the incompatibility of conventional bilevel methods with diffusion processes.
arXiv Detail & Related papers (2025-02-12T21:44:06Z) - Gradient Guidance for Diffusion Models: An Optimization Perspective [45.6080199096424]
This paper studies a form of gradient guidance for adapting a pre-trained diffusion model towards optimizing user-specified objectives.
We establish a mathematical framework for guided diffusion to systematically study its optimization theory and algorithmic design.
arXiv Detail & Related papers (2024-04-23T04:51:02Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - GRAWA: Gradient-based Weighted Averaging for Distributed Training of
Deep Learning Models [9.377424534371727]
We study distributed training of deep models in time-constrained environments.
We propose a new algorithm that periodically pulls workers towards the center variable computed as an average of workers.
arXiv Detail & Related papers (2024-03-07T04:22:34Z) - DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning [19.84386060857712]
This paper introduces DiffTORI, which utilizes Differentiable Trajectory optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning.<n>Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains.
arXiv Detail & Related papers (2024-02-08T05:26:40Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.