TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models
- URL: http://arxiv.org/abs/2507.10643v3
- Date: Tue, 05 Aug 2025 16:03:04 GMT
- Title: TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models
- Authors: Yuchi Tang, IƱaki Esnaola, George Panoutsos,
- Abstract summary: Existing post-hoc model-agnostic methods generate external explanations for opaque models.<n>We propose a rigorous set of postulates -- "precision", "fed", and "zero-discrepancy" -- to govern Taylor term-specific attribution.
- Score: 1.253514894229043
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work enhances the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
Related papers
- CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
Chain-of-thought (CoT) reasoning enables large language models to break down complex problems into interpretable intermediate steps.<n>We introduce groundingS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions.<n>We show improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
arXiv Detail & Related papers (2025-07-10T21:32:18Z) - Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis.<n>Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions.<n>We propose a score-based model that eliminates the need for predefined structural or distributional assumptions.
arXiv Detail & Related papers (2025-06-27T15:05:37Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Lifted Model Checking for Relational MDPs [12.574454799055026]
pCTL-REBEL is a lifted model checking approach for verifying pCTL properties on relational MDPs.
We show that the pCTL model checking approach is decidable for relational MDPs even for possibly infinite domains.
arXiv Detail & Related papers (2021-06-22T13:12:36Z) - A General Taylor Framework for Unifying and Revisiting Attribution
Methods [36.34893316038053]
We propose a Taylor attribution framework, which models the attribution problem as how to decide individual payoffs in a coalition.
We establish three principles for a good attribution in the Taylor attribution framework.
arXiv Detail & Related papers (2021-05-28T13:57:16Z) - An Identifiable Double VAE For Disentangled Representations [24.963285614606665]
We propose a novel VAE-based generative model with theoretical guarantees on identifiability.
We obtain our conditional prior over the latents by learning an optimal representation.
Experimental results indicate superior performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2020-10-19T09:59:31Z) - A Unified Taylor Framework for Revisiting Attribution Methods [49.03783992773811]
We propose a Taylor attribution framework and reformulate seven mainstream attribution methods into the framework.
We establish three principles for a good attribution in the Taylor attribution framework.
arXiv Detail & Related papers (2020-08-21T22:07:06Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Taylor Expansion Policy Optimization [55.204663986972875]
We show that Taylor expansions intimately relate to off-policy evaluation.
This new formulation entails modifications which improve the performance of several state-of-the-art distributed algorithms.
arXiv Detail & Related papers (2020-03-13T13:14:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.