論文の概要: Real-time, Adaptive Radiological Anomaly Detection and Isotope Identification Using Non-negative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2507.10715v1
- Date: Mon, 14 Jul 2025 18:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.838678
- Title: Real-time, Adaptive Radiological Anomaly Detection and Isotope Identification Using Non-negative Matrix Factorization
- Title(参考訳): 非負行列分解によるリアルタイム・適応的放射線異常検出と同位体同定
- Authors: Chandler Jones, Mark Bandstra, Stefan Faaland, Yue Shi Lai, Nico Abgrall, Scott Suchyta, Reynold Cooper,
- Abstract要約: 非負行列分解(NMF)はスペクトル異常の検出と同定のための強力なツールであることが示されている。
我々は,環境条件の変化に対応するために,背景モデルを定期的に更新する新しいNMFアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectroscopic anomaly detection and isotope identification algorithms are integral components in nuclear nonproliferation applications such as search operations. The task is especially challenging in the case of mobile detector systems due to the fact that the observed gamma-ray background changes more than for a static detector system, and a pretrained background model can easily find itself out of domain. The result is that algorithms may exceed their intended false alarm rate, or sacrifice detection sensitivity in order to maintain the desired false alarm rate. Non-negative matrix factorization (NMF) has been shown to be a powerful tool for spectral anomaly detection and identification, but, like many similar algorithms that rely on data-driven background models, in its conventional implementation it is unable to update in real time to account for environmental changes that affect the background spectroscopic signature. We have developed a novel NMF-based algorithm that periodically updates its background model to accommodate changing environmental conditions. The Adaptive NMF algorithm involves fewer assumptions about its environment, making it more generalizable than existing NMF-based methods while maintaining or exceeding detection performance on simulated and real-world datasets.
- Abstract(参考訳): 分光異常検出および同位体同定アルゴリズムは、探索操作のような核非増殖の応用において不可欠な要素である。
この課題は、観測されたガンマ線背景が静的検出器システムよりも変化するため、移動検出器システムでは特に困難であり、事前訓練された背景モデルは容易に領域外を見つけることができる。
その結果、アルゴリズムは意図した誤報率を超過したり、望まれる誤報率を維持するために検出感度を犠牲にする可能性がある。
非負行列分解(NMF)は、スペクトル異常の検出と同定の強力なツールであることが示されているが、データ駆動の背景モデルに依存する多くの類似アルゴリズムと同様に、従来の実装では、背景分光図に影響を及ぼす環境変化をリアルタイムで考慮できない。
我々は,環境条件の変化に対応するために,背景モデルを定期的に更新する新しいNMFアルゴリズムを開発した。
Adaptive NMFアルゴリズムは環境に関する仮定を少なくし、シミュレーションされた実世界のデータセット上で検出性能を維持したり超えたりしながら、既存のNMFベースの手法よりも一般化できる。
関連論文リスト
- An Efficient Outlier Detection Algorithm for Data Streaming [51.56874851156008]
Local Outlier Factor (LOF)アルゴリズムのような従来の異常検出手法は、リアルタイムデータと競合する。
本稿では,オンライン異常検出におけるLOFアルゴリズムの効率向上のための新しい手法を提案し,EILOFアルゴリズムを提案する。
EILOFアルゴリズムは計算コストを大幅に削減するだけでなく、加算点数が増加すると検出精度を体系的に改善する。
論文 参考訳(メタデータ) (2025-01-02T05:12:43Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
航法的に訓練された検出器は、限定的で単調な偽のパターンに過度に適合する傾向にあり、特徴空間は高度に制約され、低ランクになる。
潜在的な治療法の1つは、ビジョンファウンデーションモデルに事前訓練された知識を取り入れて、機能領域を広げることである。
主要なコンポーネントを凍結し、残ったコンポーネントのみを適用することで、フェイクパターンを学習しながら、トレーニング済みの知識を保存します。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Noise-to-Norm Reconstruction for Industrial Anomaly Detection and
Localization [5.101905755052051]
異常検出は幅広い応用があり、特に工業品質検査において重要である。
再構成に基づく手法では, サンプルの位置差を考慮せずに, 再構成誤差を用いて異常を検出する。
本研究では, 異常領域の不変な再構成を回避するため, ノイズ・ツー・ノーム・パラダイムを用いた再構成手法を提案する。
論文 参考訳(メタデータ) (2023-07-06T08:06:48Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
モジュール化検出器のタイミング解析のためのディープラーニングに基づく新しい手法を提案する。
本稿では,提案手法が求める最適関数の存在を数学的に証明し,モデルのトレーニングと校正のための体系的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T09:16:31Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
本論文は、変化の期間が有限で未知であると仮定して、逐次的な変化点検出問題に対処する。
我々は、所定の時間(または空間)ウィンドウにおける最小検出確率を最大化する信頼性の高い最大変更検出基準に焦点を当てる。
FMAアルゴリズムは、光学画像中の衛星のかすかなストリークを検出するために応用される。
論文 参考訳(メタデータ) (2021-02-02T04:58:57Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
畳み込みニューラルネットワーク(CNN)技術は、画像ベースの異常検出アプリケーションにおいて非常に有用であることが証明されている。
モデル・オブ・ノーマル性(MoN)を用いた類似度尺度に基づく異常検出のための伝達学習フレームワークを提案する。
提案したしきい値設定により,大幅な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-11-12T05:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。