AI and the Net-Zero Journey: Energy Demand, Emissions, and the Potential for Transition
- URL: http://arxiv.org/abs/2507.10750v1
- Date: Mon, 14 Jul 2025 19:16:27 GMT
- Title: AI and the Net-Zero Journey: Energy Demand, Emissions, and the Potential for Transition
- Authors: Pandu Devarakota, Nicolas Tsesmetzis, Faruk O. Alpak, Apurva Gala, Detlef Hohl,
- Abstract summary: We present energy consumption scenarios of data centers and impact on GHG emissions.<n>We address the quintessential question of whether AI will have a net positive, neutral, or negative impact on CO2 emissions by 2035.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Thanks to the availability of massive amounts of data, computing resources, and advanced algorithms, AI has entered nearly every sector. This has sparked significant investment and interest, particularly in building data centers with the necessary hardware and software to develop and operate AI models and AI-based workflows. In this technical review article, we present energy consumption scenarios of data centers and impact on GHG emissions, considering both near-term projections (up to 2030) and long-term outlook (2035 and beyond). We address the quintessential question of whether AI will have a net positive, neutral, or negative impact on CO2 emissions by 2035. Additionally, we discuss AI's potential to automate, create efficient and disruptive workflows across various fields related to energy production, supply and consumption. In the near-term scenario, the growing demand for AI will likely strain computing resources, lead to increase in electricity consumption and therefore associated CO2 emissions. This is due to the power-hungry nature of big data centers and the requirements for training and running of large and complex AI models, as well as the penetration of AI assistant search and applications for public use. However, the long-term outlook could be more promising. AI has the potential to be a game-changer in CO2 reduction. Its ability to further automate and optimize processes across industries, from energy production to logistics, could significantly decrease our carbon footprint. This positive impact is anticipated to outweigh the initial emissions bump, creating value for businesses and society in areas where traditional solutions have fallen short. In essence, AI might cause some initial growing pains for the environment, but it has the potential to support climate mitigation efforts.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.<n>We contend that a narrow focus on direct emissions misrepresents AI's true climate footprint, limiting the scope for meaningful interventions.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Exploring the sustainable scaling of AI dilemma: A projective study of corporations' AI environmental impacts [0.0]
We propose a methodology to estimate the environmental impact of a company's AI portfolio.<n>Results confirm that large generative AI models consume up to 4600x more energy than traditional models.<n>Mitigating the environmental impact of Generative AI by 2030 requires coordinated efforts across the AI value chain.
arXiv Detail & Related papers (2025-01-24T08:58:49Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.<n>First, it is not sustainable, as, despite efficiency improvements, its compute demands increase faster than model performance.<n>Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Beyond Efficiency: Scaling AI Sustainably [4.711003829305544]
Modern AI applications have driven ever-increasing demands in computing.
This paper characterizes the carbon impact of AI, including both operational carbon emissions from training and inference as well as embodied carbon emissions from hardware manufacturing.
arXiv Detail & Related papers (2024-06-08T00:07:16Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - DeepEn2023: Energy Datasets for Edge Artificial Intelligence [3.0996501197166975]
We propose large-scale energy datasets for edge AI, named DeepEn2023, covering a wide range of kernels, state-of-the-art deep neural network models, and popular edge AI applications.
We anticipate that DeepEn2023 will improve transparency in sustainability in on-device deep learning across a range of edge AI systems and applications.
arXiv Detail & Related papers (2023-11-30T16:54:36Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases.
We present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI.
arXiv Detail & Related papers (2021-10-30T23:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.