GALDS: A Graph-Autoencoder-based Latent Dynamics Surrogate model to predict neurite material transport
- URL: http://arxiv.org/abs/2507.10871v1
- Date: Tue, 15 Jul 2025 00:22:00 GMT
- Title: GALDS: A Graph-Autoencoder-based Latent Dynamics Surrogate model to predict neurite material transport
- Authors: Tsung Yeh Hsieh, Yongjie Jessica Zhang,
- Abstract summary: We propose a Graph-Autoencoder-based Latent Dynamics Surrogate model to streamline the simulation of material transport in neural trees.<n>Our approach achieves mean relative error of 3% with maximum relative error 8% and demonstrates a 10-fold speed improvement compared to previous surrogate model approaches.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neurons exhibit intricate geometries within their neurite networks, which play a crucial role in processes such as signaling and nutrient transport. Accurate simulation of material transport in the networks is essential for understanding these biological phenomena but poses significant computational challenges because of the complex tree-like structures involved. Traditional approaches are time-intensive and resource-demanding, yet the inherent properties of neuron trees, which consists primarily of pipes with steady-state parabolic velocity profiles and bifurcations, provide opportunities for computational optimization. To address these challenges, we propose a Graph-Autoencoder-based Latent Dynamics Surrogate (GALDS) model, which is specifically designed to streamline the simulation of material transport in neural trees. GALDS employs a graph autoencoder to encode latent representations of the network's geometry, velocity fields, and concentration profiles. These latent space representations are then assembled into a global graph, which is subsequently used to predict system dynamics in the latent space via a trained graph latent space system dynamic model, inspired by the Neural Ordinary Differential Equations (Neural ODEs) concept. The integration of an autoencoder allows for the use of smaller graph neural network models with reduced training data requirements. Furthermore, the Neural ODE component effectively mitigates the issue of error accumulation commonly encountered in recurrent neural networks. The effectiveness of the GALDS model is demonstrated through results on eight unseen geometries and four abnormal transport examples, where our approach achieves mean relative error of 3% with maximum relative error <8% and demonstrates a 10-fold speed improvement compared to previous surrogate model approaches.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
We present a RNN model based on convolutional neural networks for modeling the nonlinear non-adiabatic dynamics of hybrid quantum-classical systems.<n> validation studies show that the trained PARC model could reproduce the space-time evolution of a one-dimensional semi-classical Holstein model.
arXiv Detail & Related papers (2024-12-09T16:23:25Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) emulate the integrated-fire-leak mechanism found in biological neurons.
Existing SNNs predominantly rely on the Integrate-and-Fire Leaky (LIF) model.
This paper proposes a novel S-patioTemporal Circuit (STC) model.
arXiv Detail & Related papers (2024-06-01T11:17:27Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.