論文の概要: How to Protect Models against Adversarial Unlearning?
- arxiv url: http://arxiv.org/abs/2507.10886v1
- Date: Tue, 15 Jul 2025 00:59:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.938128
- Title: How to Protect Models against Adversarial Unlearning?
- Title(参考訳): 敵対的未学習からモデルを守るには?
- Authors: Patryk Jasiorski, Marek Klonowski, Michał Woźniak,
- Abstract要約: 本研究では,悪意ある者が故意に未学習の要求を送信し,モデルの性能を低下させるという,敵対的未学習の問題について検討する。
この現象と敵の能力は、主にバックボーンモデル自体や、学習すべきデータを選択する際の戦略・制限など、多くの要因に依存していることを示す。
この研究の主な成果は、自発的なプロセスと逆作用によって引き起こされる未学習の動作の両方において、これらの副作用からモデル性能を保護する新しい方法である。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI models need to be unlearned to fulfill the requirements of legal acts such as the AI Act or GDPR, and also because of the need to remove toxic content, debiasing, the impact of malicious instances, or changes in the data distribution structure in which a model works. Unfortunately, removing knowledge may cause undesirable side effects, such as a deterioration in model performance. In this paper, we investigate the problem of adversarial unlearning, where a malicious party intentionally sends unlearn requests to deteriorate the model's performance maximally. We show that this phenomenon and the adversary's capabilities depend on many factors, primarily on the backbone model itself and strategy/limitations in selecting data to be unlearned. The main result of this work is a new method of protecting model performance from these side effects, both in the case of unlearned behavior resulting from spontaneous processes and adversary actions.
- Abstract(参考訳): AIモデルは、AI法やGDPRのような法的行為の要件を満たすために、未学習でなければならない。また、有害なコンテンツ、嫌悪感、悪意のあるインスタンスの影響、モデルが機能するデータ分散構造の変化などを取り除く必要もある。
残念ながら、知識の除去は、モデル性能の劣化など、望ましくない副作用を引き起こす可能性がある。
本稿では、悪意ある者が故意に未学習の要求を送り、モデルの性能を最大限に劣化させるという、敵対的未学習の問題について検討する。
この現象と敵の能力は、主にバックボーンモデル自体や、学習すべきデータを選択する際の戦略・制限など、多くの要因に依存していることを示す。
この研究の主な成果は、自発的なプロセスと逆作用によって引き起こされる未学習の動作の両方において、これらの副作用からモデル性能を保護する新しい方法である。
関連論文リスト
- Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities [49.09703018511403]
大規模言語モデル(LLM)のリスクと能力の評価は、AIのリスク管理とガバナンスフレームワークにますます取り入れられている。
現在、ほとんどのリスク評価は、システムから有害な振る舞いを誘発する入力を設計することで実施されている。
本稿では,遅延活性化や重みへの修正が可能なモデル改ざん攻撃を用いたLCMの評価を提案する。
論文 参考訳(メタデータ) (2025-02-03T18:59:16Z) - Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation [58.7395356511539]
有害な微調整攻撃は、微調整サービスに重大なセキュリティリスクをもたらす。
主流防衛は、後の有害な微調整攻撃がより効果的でないように、モデルを予防接種することを目的としている。
微調整後のモデルに適用可能な適応的摂動を最適化するパナセアを提案する。
論文 参考訳(メタデータ) (2025-01-30T02:47:09Z) - Dissecting Fine-Tuning Unlearning in Large Language Models [12.749301272512222]
微調整に基づく未学習法は、大規模言語モデルにおいて有害で機密性の高い、あるいは著作権のある情報を防ぐために一般的である。
しかし、これらの手法の真の有効性は明らかでない。
本研究では,アクティベーションパッチやリカバリ実験を通じて,微調整に基づくアンラーニングの限界を掘り下げる。
論文 参考訳(メタデータ) (2024-10-09T06:58:09Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAIツールは、モデル抽出攻撃の脆弱性を増大させる可能性がある。
そこで本研究では,ブラックボックス設定下での解釈可能なモデルに対して,新たなリトレーニング(学習)に基づくモデル抽出攻撃フレームワークを提案する。
AUTOLYCUSは非常に効果的で、最先端の攻撃に比べてクエリが大幅に少ないことが示される。
論文 参考訳(メタデータ) (2023-02-04T13:23:39Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Thief, Beware of What Get You There: Towards Understanding Model
Extraction Attack [13.28881502612207]
いくつかのシナリオでは、AIモデルはプロプライエタリに訓練され、事前に訓練されたモデルも十分な分散データも公開されていない。
既存の手法の有効性は,事前学習モデルの欠如に大きく影響している。
モデル抽出攻撃を、これらの要因を深層強化学習で捉える適応的フレームワークに定式化します。
論文 参考訳(メタデータ) (2021-04-13T03:46:59Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。