LiLM-RDB-SFC: Lightweight Language Model with Relational Database-Guided DRL for Optimized SFC Provisioning
- URL: http://arxiv.org/abs/2507.10903v1
- Date: Tue, 15 Jul 2025 01:42:44 GMT
- Title: LiLM-RDB-SFC: Lightweight Language Model with Relational Database-Guided DRL for Optimized SFC Provisioning
- Authors: Parisa Fard Moshiri, Xinyu Zhu, Poonam Lohan, Burak Kantarci, Emil Janulewicz,
- Abstract summary: LiLM-RDB-SFC is a novel approach combining Language Model (LiLM) with Database (RDB) to answer network state queries.<n>Our proposed approach leverages two LiLMs, Bidirectional and Auto-Regressive Transformers (BART) and the Fine-tuned Language Net T5 Lightweight Transformers (FLAN-T5)<n>Results demonstrate that FLAN-T5 outperforms BART with a lower test loss (0.00161 compared to 0.00734), higher accuracy (94.79% compared to 80.2%), and less processing time (2h 2min compared to 38min)
- Score: 9.511939514075424
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective management of Service Function Chains (SFCs) and optimal Virtual Network Function (VNF) placement are critical challenges in modern Software-Defined Networking (SDN) and Network Function Virtualization (NFV) environments. Although Deep Reinforcement Learning (DRL) is widely adopted for dynamic network decision-making, its inherent dependency on structured data and fixed action rules often limits adaptability and responsiveness, particularly under unpredictable network conditions. This paper introduces LiLM-RDB-SFC, a novel approach combining Lightweight Language Model (LiLM) with Relational Database (RDB) to answer network state queries to guide DRL model for efficient SFC provisioning. Our proposed approach leverages two LiLMs, Bidirectional and Auto-Regressive Transformers (BART) and the Fine-tuned Language Net T5 (FLAN-T5), to interpret network data and support diverse query types related to SFC demands, data center resources, and VNF availability. Results demonstrate that FLAN-T5 outperforms BART with a lower test loss (0.00161 compared to 0.00734), higher accuracy (94.79% compared to 80.2%), and less processing time (2h 2min compared to 2h 38min). Moreover, when compared to the large language model SQLCoder, FLAN-T5 matches the accuracy of SQLCoder while cutting processing time by 96% (SQLCoder: 54 h 43 min; FLAN-T5: 2 h 2 min).
Related papers
- Traversal Learning Coordination For Lossless And Efficient Distributed Learning [0.0]
Traversal Learning (TL) is a novel approach designed to address the problem of decreased quality encountered in popular distributed learning (DL) paradigms.<n>TL adopts a unique strategy where the model traverses the nodes during forward propagation (FP) and performs backward propagation (BP) on the orchestrator.
arXiv Detail & Related papers (2025-04-10T05:48:57Z) - Integrating Language Models for Enhanced Network State Monitoring in DRL-Based SFC Provisioning [5.37102888813454]
This paper integrates Deep Reinforcement Learning (DRL) with Language Models (LMs) to enhance network management.<n>By feeding final VNF allocations from DRL into the LM, the system can process and respond to queries related to SFCs, DCs, and VNFs, enabling real-time insights into resource utilization, bottleneck detection, and future demand planning.
arXiv Detail & Related papers (2025-02-16T22:52:14Z) - LLM4DistReconfig: A Fine-tuned Large Language Model for Power Distribution Network Reconfiguration [1.3453966060917504]
Power distribution networks are evolving due to the integration of DERs and increased customer participation.<n>To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary.<n>Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data.
arXiv Detail & Related papers (2025-01-24T22:46:14Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - LoongServe: Efficiently Serving Long-Context Large Language Models with Elastic Sequence Parallelism [12.521026493432181]
Existing large language models (LLMs) cannot efficiently serve variable-length requests in different phases.
We propose a new parallelism paradigm, elastic sequence parallelism (ESP), to adapt to the variance between different requests and phases.
LoongServe improves the maximum throughput by up to 3.85$times$ compared to the chunked prefill and 5.81$times$ compared to the prefill-decoding disaggregation.
arXiv Detail & Related papers (2024-04-15T07:45:04Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - OFedQIT: Communication-Efficient Online Federated Learning via
Quantization and Intermittent Transmission [7.6058140480517356]
Online federated learning (OFL) is a promising framework to collaboratively learn a sequence of non-linear functions (or models) from distributed streaming data.
We propose a communication-efficient OFL algorithm (named OFedQIT) by means of a quantization and an intermittent transmission.
Our analysis reveals that OFedQIT successfully addresses the drawbacks of OFedAvg while maintaining superior learning accuracy.
arXiv Detail & Related papers (2022-05-13T07:46:43Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.