Integrating Language Models for Enhanced Network State Monitoring in DRL-Based SFC Provisioning
- URL: http://arxiv.org/abs/2502.11298v1
- Date: Sun, 16 Feb 2025 22:52:14 GMT
- Title: Integrating Language Models for Enhanced Network State Monitoring in DRL-Based SFC Provisioning
- Authors: Parisa Fard Moshiri, Murat Arda Onsu, Poonam Lohan, Burak Kantarci, Emil Janulewicz,
- Abstract summary: This paper integrates Deep Reinforcement Learning (DRL) with Language Models (LMs) to enhance network management.
By feeding final VNF allocations from DRL into the LM, the system can process and respond to queries related to SFCs, DCs, and VNFs, enabling real-time insights into resource utilization, bottleneck detection, and future demand planning.
- Score: 5.37102888813454
- License:
- Abstract: Efficient Service Function Chain (SFC) provisioning and Virtual Network Function (VNF) placement are critical for enhancing network performance in modern architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). While Deep Reinforcement Learning (DRL) aids decision-making in dynamic network environments, its reliance on structured inputs and predefined rules limits adaptability in unforeseen scenarios. Additionally, incorrect actions by a DRL agent may require numerous training iterations to correct, potentially reinforcing suboptimal policies and degrading performance. This paper integrates DRL with Language Models (LMs), specifically Bidirectional Encoder Representations from Transformers (BERT) and DistilBERT, to enhance network management. By feeding final VNF allocations from DRL into the LM, the system can process and respond to queries related to SFCs, DCs, and VNFs, enabling real-time insights into resource utilization, bottleneck detection, and future demand planning. The LMs are fine-tuned to our domain-specific dataset using Low-Rank Adaptation (LoRA). Results show that BERT outperforms DistilBERT with a lower test loss (0.28 compared to 0.36) and higher confidence (0.83 compared to 0.74), though BERT requires approximately 46% more processing time.
Related papers
- LLM4DistReconfig: A Fine-tuned Large Language Model for Power Distribution Network Reconfiguration [1.3453966060917504]
Power distribution networks are evolving due to the integration of DERs and increased customer participation.
To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary.
Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data.
arXiv Detail & Related papers (2025-01-24T22:46:14Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns [1.1965844936801797]
Convolutional neural networks (ConvNets) exert severe demands on local device resources.
This brief presents work toward utilizing static convolutional filters to design efficient ConvNet architectures.
arXiv Detail & Related papers (2024-07-20T10:18:42Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN [7.277944770202078]
This work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading.
Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
arXiv Detail & Related papers (2024-01-21T21:57:22Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled
Zero-Touch 6G Networks: Model-Free DRL Approach [0.0]
We propose a model-free deep reinforcement learning (DRL)-based proactive failure recovery framework called zero-touch PFR (ZT-PFR)
ZT-PFR is for the embedded stateful virtual network functions (VNFs) in network function virtualization (NFV) enabled networks.
arXiv Detail & Related papers (2021-02-02T21:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.