Towards Practical Benchmarking of Data Cleaning Techniques: On Generating Authentic Errors via Large Language Models
- URL: http://arxiv.org/abs/2507.10934v1
- Date: Tue, 15 Jul 2025 02:58:25 GMT
- Title: Towards Practical Benchmarking of Data Cleaning Techniques: On Generating Authentic Errors via Large Language Models
- Authors: Xinyuan Liu, Jiahui Chen, Bocheng Hu, Yu Sun, Xinyang Chen, Shaoxu Song,
- Abstract summary: TableEG is a framework that leverages large language models to generate authentic errors.<n>We trained on 12 real-world datasets spanning 10 diverse domains.<n>TableEG not only bridges the gap between synthetic and real-world errors but also establishes a robust benchmark for subsequent error detection and correction tasks.
- Score: 15.985949745494747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data quality remains an important challenge in data-driven systems, as errors in tabular data can severely compromise downstream analytics and machine learning performance. Although numerous error detection algorithms have been proposed, the lack of diverse, real-world error datasets limits comprehensive evaluation. Manual error annotation is both time-consuming and inconsistent, motivating the exploration of synthetic error generation as an alternative. In this work, we introduce TableEG, a framework that leverages large language models (LLMs) to generate authentic errors. By employing a table fine-tuning strategy and a triplet representation $(I, T, O)$ to model error generation, detection, and correction tasks, TableEG captures the complex dependencies inherent in two-dimensional tables. Trained on 12 real-world datasets spanning 10 diverse domains, TableEG ensures that the synthesized errors faithfully reflect authentic error distributions. Experimental results indicate that errors generated by TableEG exhibit superior pattern and distribution similarity compared to both rule-based methods and LLM-generated errors without fine-tuning. Furthermore, performance metrics on TableEG-generated errors closely align with those on real-world errors across nearly all datasets and detection algorithms, particularly for machine learning based detection techniques. Overall, TableEG not only bridges the gap between synthetic and real-world errors but also establishes a robust benchmark for subsequent error detection and correction tasks.
Related papers
- AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.<n>Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.<n>We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Exploring LLM Agents for Cleaning Tabular Machine Learning Datasets [19.844836459291546]
High-quality, error-free datasets are a key ingredient in building reliable, accurate, and unbiased machine learning (ML) models.<n>However, real world datasets often suffer from errors due to sensor malfunctions, data entry mistakes, or improper data integration across multiple sources.<n>In this study, we investigate whether Large Language Models (LLMs) can help alleviate the burden of manual data cleaning.
arXiv Detail & Related papers (2025-03-09T15:29:46Z) - Tgea: An error-annotated dataset and benchmark tasks for text generation from pretrained language models [57.758735361535486]
TGEA is an error-annotated dataset for text generation from pretrained language models (PLMs)<n>We create an error taxonomy to cover 24 types of errors occurring in PLM-generated sentences.<n>This is the first dataset with comprehensive annotations for PLM-generated texts.
arXiv Detail & Related papers (2025-03-06T09:14:02Z) - Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework [64.83955753606443]
Math Word Problems serve as a crucial benchmark for evaluating Large Language Models' reasoning abilities.<n>Current error classification methods rely on static and predefined categories.<n>We introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples.
arXiv Detail & Related papers (2025-01-26T16:17:57Z) - Distributionally robust self-supervised learning for tabular data [2.942619386779508]
Learning robust representation in presence of error slices is challenging, due to high cardinality features and the complexity of constructing error sets.<n>Traditional robust representation learning methods are largely focused on improving worst group performance in supervised setting in computer vision.<n>Our approach utilizes an encoder-decoder model trained with Masked Language Modeling (MLM) loss to learn robust latent representations.
arXiv Detail & Related papers (2024-10-11T04:23:56Z) - Subtle Errors in Reasoning: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)<n>RISE injects predefined subtle errors into pivotal tokens in reasoning or steps to construct hard pairs for error mitigation.<n>Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH with only 4.5K training samples.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors [11.07539342949602]
We propose an end-to-end framework for detecting factual errors in text summarization.
Our framework uses a diverse set of LLM prompts to identify factual inconsistencies.
We calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination.
arXiv Detail & Related papers (2024-06-18T18:59:37Z) - Parameter-tuning-free data entry error unlearning with adaptive
selective synaptic dampening [51.34904967046097]
We introduce an extension to the selective synaptic dampening unlearning method that removes the need for parameter tuning.
We demonstrate the performance of this extension, adaptive selective synaptic dampening (ASSD) on various ResNet18 and Vision Transformer unlearning tasks.
The application of this approach is particularly compelling in industrial settings, such as supply chain management.
arXiv Detail & Related papers (2024-02-06T14:04:31Z) - Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization [34.85353544844499]
We present the first dataset with fine-grained factual error annotations named DIASUMFACT.
We define fine-grained factual error detection as a sentence-level multi-label classification problem.
We propose an unsupervised model ENDERANKER via candidate ranking using pretrained encoder-decoder models.
arXiv Detail & Related papers (2023-05-26T00:18:33Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
Existing approaches can not synchronously consider error position and type.
We build an FG-TED model to predict the textbf addition and textbfomission errors.
Experiments show that our model can identify both error type and position concurrently, and gives state-of-the-art results.
arXiv Detail & Related papers (2023-02-17T16:20:33Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model.
We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models.
arXiv Detail & Related papers (2022-05-25T15:26:48Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.