論文の概要: Modeling Habitat Shifts: Integrating Convolutional Neural Networks and Tabular Data for Species Migration Prediction
- arxiv url: http://arxiv.org/abs/2507.10993v1
- Date: Tue, 15 Jul 2025 05:17:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.988024
- Title: Modeling Habitat Shifts: Integrating Convolutional Neural Networks and Tabular Data for Species Migration Prediction
- Title(参考訳): 移動予測のための畳み込みニューラルネットワークとタブラルデータの統合によるハビタットシフトのモデル化
- Authors: Emir Durakovic, Min-Hong Shih,
- Abstract要約: 本研究では,鳥種が特定の生息地に存在するかどうかを正確にモデル化する手法を提案する。
本手法では, 衛星画像と環境特徴を利用して, 様々な気候における鳥の存在を予測する。
どちらのシステムも、鳥の分布を平均85%の精度で予測しており、鳥の移動を理解するためのスケーラブルで信頼性の高い方法を提供している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to climate-induced changes, many habitats are experiencing range shifts away from their traditional geographic locations (Piguet, 2011). We propose a solution to accurately model whether bird species are present in a specific habitat through the combination of Convolutional Neural Networks (CNNs) (O'Shea, 2015) and tabular data. Our approach makes use of satellite imagery and environmental features (e.g., temperature, precipitation, elevation) to predict bird presence across various climates. The CNN model captures spatial characteristics of landscapes such as forestation, water bodies, and urbanization, whereas the tabular method uses ecological and geographic data. Both systems predict the distribution of birds with an average accuracy of 85%, offering a scalable but reliable method to understand bird migration.
- Abstract(参考訳): 気候による変化により、多くの生息地は伝統的な地理的な場所から遠ざかっている(Piguet, 2011)。
本稿では,CNN (Convolutional Neural Networks) (O'Shea, 2015) と表型データの組み合わせにより, 特定の生息域に鳥類種が存在するかどうかを正確にモデル化する手法を提案する。
本手法では, 衛星画像と環境特性(気温, 降水量, 標高など)を用いて, 様々な気候における鳥の存在を予測する。
CNNモデルは、森林、水域、都市化などの景観の空間的特徴を捉え、表層法は生態学的および地理的データを使用する。
どちらのシステムも、鳥の分布を平均85%の精度で予測しており、鳥の移動を理解するためのスケーラブルで信頼性の高い方法を提供している。
関連論文リスト
- Feedforward Few-shot Species Range Estimation [61.60698161072356]
特定の種が地球上でどこで発見できるかを知ることは、生態学の研究と保全に不可欠である。
正確な射程推定は 知られている全ての種の 比較的小さな割合でしか 利用できない
我々は、限られたデータから種の範囲を正確に推定するという課題に対処するために、数発の種範囲推定の新しいアプローチを概説する。
論文 参考訳(メタデータ) (2025-02-20T19:13:29Z) - MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling [2.3776390335270694]
我々は、エコリージョンエンコーダを備えたマルチインプット・ビジョン・トランスフォーマー・モデルであるMiTREEを紹介する。
夏期と冬期のサットバードデータセットを用いて,鳥種の出現率を予測することを目的として,本モデルの評価を行った。
論文 参考訳(メタデータ) (2024-12-25T22:20:47Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
地理空間植生予測タスクのためのVegeDiffを提案する。
VegeDiffは、植物の変化過程の不確かさを確率的に捉えるために拡散モデルを使用した最初の企業である。
植生の変化の不確かさを捉え、関連する変数の複雑な影響をモデル化することで、VegeDiffは既存の決定論的手法より優れている。
論文 参考訳(メタデータ) (2024-07-17T14:15:52Z) - Predicting Species Occurrence Patterns from Partial Observations [21.009271008147785]
本稿では,(a)衛星画像を用いた種発生パターンの予測と,(b)他の種の発生に関する既知の情報を紹介する。
この課題に対して,衛星画像,環境データ,蝶の観察データのデータセットであるSatButterflyを導入する。
そこで本研究では,見つからない部分的な観測データの利用を可能にする種発生パターンを予測するための一般モデルR-Tranを提案する。
論文 参考訳(メタデータ) (2024-03-26T18:29:39Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - Inter and Intra-Annual Spatio-Temporal Variability of Habitat
Suitability for Asian Elephants in India: A Random Forest Model-based
Analysis [1.370633147306388]
インドにおけるアジアゾウの種分布を推定するランダムフォレストモデルを構築した。
好適な生息地の季節的減少は、アジアゾウの出現パターンと人・エレファント紛争の増加を説明する可能性がある。
論文 参考訳(メタデータ) (2021-07-22T06:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。