論文の概要: MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling
- arxiv url: http://arxiv.org/abs/2412.18995v1
- Date: Wed, 25 Dec 2024 22:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:28.711355
- Title: MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling
- Title(参考訳): MiTREE:多入力変圧器エコリージョンエンコーダ
- Authors: Theresa Chen, Yao-Yi Chiang,
- Abstract要約: 我々は、エコリージョンエンコーダを備えたマルチインプット・ビジョン・トランスフォーマー・モデルであるMiTREEを紹介する。
夏期と冬期のサットバードデータセットを用いて,鳥種の出現率を予測することを目的として,本モデルの評価を行った。
- 参考スコア(独自算出の注目度): 2.3776390335270694
- License:
- Abstract: Climate change poses an extreme threat to biodiversity, making it imperative to efficiently model the geographical range of different species. The availability of large-scale remote sensing images and environmental data has facilitated the use of machine learning in Species Distribution Models (SDMs), which aim to predict the presence of a species at any given location. Traditional SDMs, reliant on expert observation, are labor-intensive, but advancements in remote sensing and citizen science data have facilitated machine learning approaches to SDM development. However, these models often struggle with leveraging spatial relationships between different inputs -- for instance, learning how climate data should inform the data present in satellite imagery -- without upsampling or distorting the original inputs. Additionally, location information and ecological characteristics at a location play a crucial role in predicting species distribution models, but these aspects have not yet been incorporated into state-of-the-art approaches. In this work, we introduce MiTREE: a multi-input Vision-Transformer-based model with an ecoregion encoder. MiTREE computes spatial cross-modal relationships without upsampling as well as integrates location and ecological context. We evaluate our model on the SatBird Summer and Winter datasets, the goal of which is to predict bird species encounter rates, and we find that our approach improves upon state-of-the-art baselines.
- Abstract(参考訳): 気候変動は生物多様性に極端な脅威をもたらし、異なる種の地理的範囲を効率的にモデル化することが不可欠である。
大規模なリモートセンシング画像と環境データの提供により、特定の場所における種の存在を予測することを目的とした、種種分布モデル(SDM)における機械学習の利用が容易になった。
従来のSDMは、専門家による観察に依存しているが、リモートセンシングや市民科学データの進歩は、SDM開発への機械学習アプローチを促進している。
しかし、これらのモデルはしばしば異なる入力間の空間的関係(例えば、衛星画像に存在するデータがどのように気象データを知らせるかを学ぶこと)を活用するのに苦労し、元の入力をアップサンプリングしたり歪んだりしない。
さらに、位置情報や生態特性は種分布モデルを予測する上で重要な役割を担っているが、これらの側面はまだ最先端のアプローチには組み込まれていない。
本研究では,エコリージョンエンコーダを用いたマルチインプットビジョン・トランスフォーマーモデルであるMiTREEを紹介する。
MiTREEは、アップサンプリングなしで空間的相互関係を計算し、位置と生態的コンテキストを統合する。
サットバードの夏と冬のデータセットで,鳥種の出現率を予測することを目的として,我々のモデルを評価し,そのアプローチが最先端のベースラインで改善されることを見出した。
関連論文リスト
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Enhancing Ecological Monitoring with Multi-Objective Optimization: A Novel Dataset and Methodology for Segmentation Algorithms [17.802456388479616]
オーストラリア, ニューサウスウェールズ州ベガバレーで, 外来種および外来種を捉えた6,096個の高分解能空中画像のユニークなセマンティックセマンティックセマンティクスデータセットを導入した。
このデータセットは、草種の重複と分布のため、困難な課題を示す。
データセットとコードは公開され、コンピュータビジョン、機械学習、生態学の研究を促進することを目的としている。
論文 参考訳(メタデータ) (2024-07-25T18:27:27Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
我々は,世界規模の存在のみのデータを用いた種分布モデリングの問題に焦点をあてる。
種間の強い暗黙の関係を捉えるため,大きな言語モデルを用いて,種の分類学的階層を符号化した。
そこで本研究では,種分布モデルの評価が可能な近接認識評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-13T18:11:37Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Meta-Learning for Few-Shot Land Cover Classification [3.8529010979482123]
分類タスクとセグメンテーションタスクにおけるモデル非依存メタラーニング(MAML)アルゴリズムの評価を行った。
数発のモデル適応は,正規勾配降下による事前学習よりも優れていた。
これは、メタラーニングによるモデル最適化が地球科学におけるタスクの恩恵をもたらすことを示唆している。
論文 参考訳(メタデータ) (2020-04-28T09:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。