Efficient Dual-domain Image Dehazing with Haze Prior Perception
- URL: http://arxiv.org/abs/2507.11035v1
- Date: Tue, 15 Jul 2025 06:56:56 GMT
- Title: Efficient Dual-domain Image Dehazing with Haze Prior Perception
- Authors: Lirong Zheng, Yanshan Li, Rui Yu, Kaihao Zhang,
- Abstract summary: Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability.<n>We propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment.<n>Experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency.
- Score: 17.18810808188725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability. Existing methods predominantly rely on spatial-domain features to capture long-range dependencies, which are computationally expensive and often inadequate under complex haze conditions. While some approaches introduce frequency-domain cues, the weak coupling between spatial and frequency branches limits the overall performance. To overcome these limitations, we propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment across spatial and frequency domains. At its core, the DGFDBlock comprises two key modules: 1) the Haze-Aware Frequency Modulator (HAFM), which generates a pixel-level haze confidence map from dark channel priors to adaptively enhance haze-relevant frequency components, thereby achieving global degradation-aware spectral modulation; 2) the Multi-level Gating Aggregation Module (MGAM), which fuses multi-scale features through diverse convolutional kernels and hybrid gating mechanisms to recover fine structural details. Additionally, a Prior Correction Guidance Branch (PCGB) incorporates a closed-loop feedback mechanism, enabling iterative refinement of the prior by intermediate dehazed features and significantly improving haze localization accuracy, especially in challenging outdoor scenes. Extensive experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency. Code is available at: https://github.com/Dilizlr/DGFDNet.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - Uncertainty-Aware Spatial Color Correlation for Low-Light Image Enhancement [5.6629926700493325]
U2CLLIE is a novel framework that integrates uncertainty-aware enhancement and spatial-color causal correlation modeling.<n>It achieves state-of-the-art performance across multiple benchmark datasets, exhibiting robust performance and strong generalization across various scenes.
arXiv Detail & Related papers (2025-08-06T08:02:21Z) - SPJFNet: Self-Mining Prior-Guided Joint Frequency Enhancement for Ultra-Efficient Dark Image Restoration [3.2735437407166414]
Current dark image restoration methods suffer from severe efficiency bottlenecks.<n>We propose an Efficient Self-Mining Prior-Guided Joint Frequency Enhancement Network (SPJFNet)
arXiv Detail & Related papers (2025-08-06T03:06:29Z) - FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution [70.61549422952193]
Face super-resolution (FSR) under limited computational costs remains an open problem.<n>Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources.<n>We propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components.
arXiv Detail & Related papers (2025-06-17T02:33:42Z) - F2Net: A Frequency-Fused Network for Ultra-High Resolution Remote Sensing Segmentation [10.67983913373955]
F2Net is a frequency-aware framework that decomposes UHR images into high- and low-frequency components for specialized processing.<n>A Hybrid-Frequency Fusion module integrates these observations, guided by two novel objectives.<n>F2Net achieves state-of-the-art performance with mIoU of 80.22 and 83.39, respectively.
arXiv Detail & Related papers (2025-06-09T15:09:49Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - FUSION: Frequency-guided Underwater Spatial Image recOnstructioN [0.0]
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering.<n>Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies.<n>We propose fusion, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information.
arXiv Detail & Related papers (2025-04-01T23:16:19Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.<n>We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)<n>PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.<n>FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.