F2Net: A Frequency-Fused Network for Ultra-High Resolution Remote Sensing Segmentation
- URL: http://arxiv.org/abs/2506.07847v1
- Date: Mon, 09 Jun 2025 15:09:49 GMT
- Title: F2Net: A Frequency-Fused Network for Ultra-High Resolution Remote Sensing Segmentation
- Authors: Hengzhi Chen, Liqian Feng, Wenhua Wu, Xiaogang Zhu, Shawn Leo, Kun Hu,
- Abstract summary: F2Net is a frequency-aware framework that decomposes UHR images into high- and low-frequency components for specialized processing.<n>A Hybrid-Frequency Fusion module integrates these observations, guided by two novel objectives.<n>F2Net achieves state-of-the-art performance with mIoU of 80.22 and 83.39, respectively.
- Score: 10.67983913373955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation of ultra-high-resolution (UHR) remote sensing imagery is critical for applications like environmental monitoring and urban planning but faces computational and optimization challenges. Conventional methods either lose fine details through downsampling or fragment global context via patch processing. While multi-branch networks address this trade-off, they suffer from computational inefficiency and conflicting gradient dynamics during training. We propose F2Net, a frequency-aware framework that decomposes UHR images into high- and low-frequency components for specialized processing. The high-frequency branch preserves full-resolution structural details, while the low-frequency branch processes downsampled inputs through dual sub-branches capturing short- and long-range dependencies. A Hybrid-Frequency Fusion module integrates these observations, guided by two novel objectives: Cross-Frequency Alignment Loss ensures semantic consistency between frequency components, and Cross-Frequency Balance Loss regulates gradient magnitudes across branches to stabilize training. Evaluated on DeepGlobe and Inria Aerial benchmarks, F2Net achieves state-of-the-art performance with mIoU of 80.22 and 83.39, respectively. Our code will be publicly available.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - SPJFNet: Self-Mining Prior-Guided Joint Frequency Enhancement for Ultra-Efficient Dark Image Restoration [3.2735437407166414]
Current dark image restoration methods suffer from severe efficiency bottlenecks.<n>We propose an Efficient Self-Mining Prior-Guided Joint Frequency Enhancement Network (SPJFNet)
arXiv Detail & Related papers (2025-08-06T03:06:29Z) - Efficient Dual-domain Image Dehazing with Haze Prior Perception [17.18810808188725]
Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability.<n>We propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment.<n>Experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency.
arXiv Detail & Related papers (2025-07-15T06:56:56Z) - FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution [70.61549422952193]
Face super-resolution (FSR) under limited computational costs remains an open problem.<n>Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources.<n>We propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components.
arXiv Detail & Related papers (2025-06-17T02:33:42Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation [0.0]
FreqU-FNet is a novel U-shaped segmentation architecture operating in the frequency domain.<n>Our framework incorporates a Frequency that leverages Low-Pass Convolution and Daubechies wavelet-based downsampling.<n>Experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines.
arXiv Detail & Related papers (2025-05-23T06:51:24Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.<n>We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)<n>PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.<n>FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - Deep Fourier-embedded Network for RGB and Thermal Salient Object Detection [8.607385112274882]
Deep learning has significantly improved salient object detection (SOD) combining both RGB and thermal (RGB-T) images.<n>Existing deep learning-based RGB-T SOD models suffer from two major limitations.<n>We propose a purely Fourier transform-based model, namely Deep Fourier-Embedded Network (DFENet) for accurate RGB-T SOD.
arXiv Detail & Related papers (2024-11-27T14:55:16Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.