Standards-Compliant DM-RS Allocation via Temporal Channel Prediction for Massive MIMO Systems
- URL: http://arxiv.org/abs/2507.11064v1
- Date: Tue, 15 Jul 2025 07:56:37 GMT
- Title: Standards-Compliant DM-RS Allocation via Temporal Channel Prediction for Massive MIMO Systems
- Authors: Sehyun Ryu, Hyun Jong Yang,
- Abstract summary: We introduce the concept of channel prediction-based reference signal allocation (CPRS)<n>CPRS jointly optimize channel prediction and DM-RS allocation to improve data throughput without requiring CSI feedback.<n>We show up to 36.60% throughput improvement over benchmark strategies.
- Score: 4.251030047034567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reducing feedback overhead in beyond 5G networks is a critical challenge, as the growing number of antennas in modern massive MIMO systems substantially increases the channel state information (CSI) feedback demand in frequency division duplex (FDD) systems. To address this, extensive research has focused on CSI compression and prediction, with neural network-based approaches gaining momentum and being considered for integration into the 3GPP 5G-Advanced standards. While deep learning has been effectively applied to CSI-limited beamforming and handover optimization, reference signal allocation under such constraints remains surprisingly underexplored. To fill this gap, we introduce the concept of channel prediction-based reference signal allocation (CPRS), which jointly optimizes channel prediction and DM-RS allocation to improve data throughput without requiring CSI feedback. We further propose a standards-compliant ViViT/CNN-based architecture that implements CPRS by treating evolving CSI matrices as sequential image-like data, enabling efficient and adaptive transmission in dynamic environments. Simulation results using ray-tracing channel data generated in NVIDIA Sionna validate the proposed method, showing up to 36.60% throughput improvement over benchmark strategies.
Related papers
- Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach [65.47969413708344]
We introduce the concept of CF twins and design a conditional generative diffusion model (CGDM)<n>We employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF.<n>We show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines.
arXiv Detail & Related papers (2025-05-12T01:36:06Z) - Large Models Enabled Ubiquitous Wireless Sensing [0.33993877661368754]
We review existing methodologies for CSI estimation, emphasizing the shift from traditional to data-driven approaches.<n>We propose a novel framework for spatial CSI prediction using realistic environment information.<n>This research paves way for innovative strategies in managing wireless networks.
arXiv Detail & Related papers (2024-11-27T12:11:35Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
We propose a two stages low rank (TSLR) CSI feedback scheme to reduce the feedback overhead based on model-driven deep learning.
Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback.
arXiv Detail & Related papers (2021-12-13T03:50:43Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI
Feedback [32.442094263278605]
Forward channel state information (CSI) plays a vital role in transmission optimization for massive multiple-input multiple-output (MIMO) communication systems.
Recent studies on the use of recurrent neural networks (RNNs) have demonstrated strong promises, though the cost of computation and memory remains high.
In this work, we exploit channel coherence in time to substantially improve the feedback efficiency.
arXiv Detail & Related papers (2020-09-20T16:26:12Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.