論文の概要: KV-Latent: Dimensional-level KV Cache Reduction with Frequency-aware Rotary Positional Embedding
- arxiv url: http://arxiv.org/abs/2507.11273v1
- Date: Tue, 15 Jul 2025 12:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.113877
- Title: KV-Latent: Dimensional-level KV Cache Reduction with Frequency-aware Rotary Positional Embedding
- Title(参考訳): KV-Latent: 周波数対応ロータリー位置埋め込みによる次元レベルのKVキャッシュ低減
- Authors: Luohe Shi, Zuchao Li, Lefei Zhang, Guoming Liu, Baoyuan Qi, Hai Zhao,
- Abstract要約: Transformer Decodersをベースとした大規模言語モデル(LLM)が、会話生成AIの選択肢として好まれている。
デコーダアーキテクチャの全体的な優位性にもかかわらず、推論中にキーバリューキャッシュが徐々に増加し、主要な効率ボトルネックとなっている。
キーバリューベクトル次元を潜在空間にダウンサンプリングすることで、KVキャッシュのフットプリントを大幅に削減し、推論速度を向上させることができる。
- 参考スコア(独自算出の注目度): 72.12756830560217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) based on Transformer Decoders have become the preferred choice for conversational generative AI. Despite the overall superiority of the Decoder architecture, the gradually increasing Key-Value (KV) cache during inference has emerged as a primary efficiency bottleneck, both in aspects of memory consumption and data transfer bandwidth limitations. To address these challenges, we propose a paradigm called KV-Latent. By down-sampling the Key-Value vector dimensions into a latent space, we can significantly reduce the KV Cache footprint and improve inference speed, only with a small amount of extra training, less than 1\% of pre-training takes. Besides, we enhanced the stability of Rotary Positional Embedding applied on lower-dimensional vectors by modifying its frequency sampling mechanism, avoiding noise introduced by higher frequencies while retaining position attenuation. Our experiments, including both models with Grouped Query Attention and those without, have yielded satisfactory results. Finally, we conducted comparative experiments to study the impact of separately reducing Key and Value components on model's performance. Our approach allows for the construction of more efficient language model systems, and opens the new possibility on KV Cache saving and efficient LLMs. Our code is available at https://github.com/ShiLuohe/KV-Latent.
- Abstract(参考訳): Transformer Decodersをベースとした大規模言語モデル(LLM)が、会話生成AIの選択肢として好まれている。
デコーダアーキテクチャの全体的な優位性にもかかわらず、推論中のキーバリュー(KV)キャッシュは、メモリ消費とデータ転送帯域幅の制限の両方において、主要な効率ボトルネックとして現れている。
これらの課題に対処するため,我々はKV-Latentというパラダイムを提案する。
キーバリューベクトル次元を潜在空間にダウンサンプリングすることで、KVキャッシュのフットプリントを大幅に削減し、推論速度を向上させることができる。
さらに,周波数サンプリング機構を改良し,位置減衰を保ちながら高周波数で発生するノイズを回避することにより,低次元ベクトルに印加される回転位置埋め込みの安定性を向上した。
Grouped Query Attentionを持つモデルと、それのないモデルの両方を含む我々の実験は、満足な結果をもたらしました。
最後に,キーコンポーネントとバリューコンポーネントの分離がモデルの性能に与える影響について比較実験を行った。
提案手法により,より効率的な言語モデルの構築が可能となり,KVキャッシュの節約と効率的なLLMの新たな可能性も開ける。
私たちのコードはhttps://github.com/ShiLuohe/KV-Latent.comから入手可能です。
関連論文リスト
- ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration [81.81027217759433]
大きな言語モデル(LLM)はキーバリュー(KV)キャッシュを保存するのに必要な過剰なメモリによって制約されることが多い。
近年,KVキャッシュの隠蔽次元の低減について検討されている。
本稿では,KVキャッシュの隠れ次元を削減した後学習KVキャッシュ圧縮手法ReCalKVを提案する。
論文 参考訳(メタデータ) (2025-05-30T08:49:27Z) - FreqKV: Frequency Domain Key-Value Compression for Efficient Context Window Extension [20.360392907997117]
本稿では、新しい周波数領域鍵値(KV)圧縮技術であるFreqKVを提案する。
Freq KVはデコーダのみの大規模言語モデル(LLM)のための効率的なコンテキストウィンドウ拡張を可能にする
長い文脈言語モデリングおよび理解タスクの実験は,提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2025-05-01T14:53:12Z) - KVCrush: Key value cache size-reduction using similarity in head-behaviour [40.792661186062396]
大規模言語モデル(LLM)における推論を高速化する重要な最適化手法としてキーバリューキャッシュ(KV)が登場している。
しかしながら、KVのメモリフットプリントは、モデルのバッチサイズに直接影響を与えるモデルデプロイメントにおいて、大きなボトルネックとなります。
我々は,KVCrushと多くのKV圧縮技術を組み合わせることで,より小さなメモリでモデル精度を向上させることを提案する。
論文 参考訳(メタデータ) (2025-02-24T02:57:51Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Effectively Compress KV Heads for LLM [28.0801697946958]
キーバリュー(KV)キャッシュを圧縮する新しい手法を提案する。
提案手法は,従来のLLMに匹敵する性能を維持しつつ,KVヘッドの4分の1以上を圧縮することができる。
論文 参考訳(メタデータ) (2024-06-11T08:37:33Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。