FMC: Formalization of Natural Language Mathematical Competition Problems
- URL: http://arxiv.org/abs/2507.11275v1
- Date: Tue, 15 Jul 2025 12:52:47 GMT
- Title: FMC: Formalization of Natural Language Mathematical Competition Problems
- Authors: Jiaxuan Xie, Chengwu Liu, Ye Yuan, Siqi Li, Zhiping Xiao, Ming Zhang,
- Abstract summary: We propose an autoformalization pipeline based on large language models with error feedback.<n>We curate an Olympiad-level dataset aligning natural language problems with Lean formalizations.<n>We show that few-shot learning, error feedback, and increasing sampling numbers enhance the autoformalization process.
- Score: 12.86616278136374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient and accurate autoformalization methods, which leverage large-scale datasets of extensive natural language mathematical problems to construct formal language datasets, are key to advancing formal mathematical reasoning. In this paper, we propose an autoformalization pipeline based on large language models with error feedback, achieving a fully automatic and training-free formalization approach. Using this pipeline, we curate an Olympiad-level dataset aligning natural language problems with Lean formalizations. The dataset comprises $3,922$ mathematical problems in natural language and $9,787$ in Lean, of which $64.46\%$ were assessed as at least above-average quality, making it suitable as a benchmark for automated theorem provers. Additionally, we investigate the formalization and reasoning capabilities of various LLMs and empirically demonstrate that few-shot learning, error feedback, and increasing sampling numbers enhance the autoformalization process. Experiments of three automated theorem provers on the \dataset\ dataset also highlight its challenging nature and its value as a benchmark for formal reasoning tasks.
Related papers
- Re:Form -- Reducing Human Priors in Scalable Formal Software Verification with RL in LLMs: A Preliminary Study on Dafny [68.00108157244952]
Large Language Models (LLMs) trained with Reinforcement Learning (RL) face a significant challenge: their verification processes are neither reliable nor scalable.<n>A promising yet largely uncharted alternative is formal language-based reasoning.<n>Grounding LLMs in rigorous formal systems where generative models operate in formal language spaces (e.g., Dafny) enables the automatic and mathematically provable verification of their reasoning processes and outcomes.
arXiv Detail & Related papers (2025-07-22T08:13:01Z) - FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models [17.919212265668783]
We present FormalMATH, a large-scale Lean4 benchmark comprising 5,560 formally verified problems spanning from high-school Olympiad challenges to undergraduate-level theorems.<n>We introduce a novel human-in-the-loop autoformalization pipeline that integrates statement autoformalization, semantic verification, and negation-based disproof filtering strategies.<n>Our evaluation of state-of-the-art LLM-based theorem provers reveals significant limitations.
arXiv Detail & Related papers (2025-05-05T15:37:00Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
This paper approaches the problem of $textitautoformulation$: the automated creation of solver-ready optimization models from natural language problem descriptions.<n>We identify three core challenges of autoformulation: $textit(1)$ the vast, problem-dependent hypothesis space, and $textit(2)$ efficient and diverse exploration of this space under uncertainty.<n>We present a novel method leveraging $textitLarge Language Models$ with $textitMonte-Carlo Tree Search$, exploiting the hierarchical nature of optimization modeling to generate and systematically explore possible formulations
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency [22.86318578119266]
We introduce a novel framework that scores and selects the best result from k autoformalization candidates based on symbolic equivalence and semantic consistency.<n>Our experiments on the MATH and miniF2F datasets demonstrate that our approach significantly enhances autoformalization accuracy.
arXiv Detail & Related papers (2024-10-28T11:37:39Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [51.15420267178]
Large language models are not good at math theorem proving using formal languages like Lean.<n>A significant challenge in this area is the scarcity of training data available in these formal languages.<n>We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - Autoformalizing Natural Language to First-Order Logic: A Case Study in Logical Fallacy Detection [44.31755414036022]
We introduce Natural Language to First-Order Logic (NL2FOL), a framework to autoformalize natural language to FOL step by step using Large Language Models (LLMs)<n>Our approach addresses key challenges in this translation process, including the integration of implicit background knowledge.<n>Being neurosymbolic, our approach also provides interpretable insights into the reasoning process and demonstrates robustness without requiring model fine-tuning or labeled training data.
arXiv Detail & Related papers (2024-04-18T00:20:48Z) - Multilingual Mathematical Autoformalization [14.433478397963123]
Autoformalization is the task of translating natural language materials into machine-verifiable formalisations.
Existing methods tend to circumvent this challenge by manually curating small corpora.
In this work, we create $textttMMA$, a large, flexible, multilingual, and multi-domain dataset of informal-formal pairs.
arXiv Detail & Related papers (2023-11-07T06:42:15Z) - TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
arXiv Detail & Related papers (2023-10-16T08:42:39Z) - Autoformalization with Large Language Models [22.86710743804944]
A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence.
We show large language models provide new prospects towards this goal.
Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from $29.6%$ to $35.2%$.
arXiv Detail & Related papers (2022-05-25T09:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.