HANS-Net: Hyperbolic Convolution and Adaptive Temporal Attention for Accurate and Generalizable Liver and Tumor Segmentation in CT Imaging
- URL: http://arxiv.org/abs/2507.11325v1
- Date: Tue, 15 Jul 2025 13:56:37 GMT
- Title: HANS-Net: Hyperbolic Convolution and Adaptive Temporal Attention for Accurate and Generalizable Liver and Tumor Segmentation in CT Imaging
- Authors: Arefin Ittesafun Abian, Ripon Kumar Debnath, Md. Abdur Rahman, Mohaimenul Azam Khan Raiaan, Md Rafiqul Islam, Asif Karim, Reem E. Mohamed, Sami Azam,
- Abstract summary: Accurate liver and tumor segmentation on abdominal CT images is critical for reliable diagnosis and treatment planning.<n>We introduce Hyperbolic-convolutions Adaptive-temporal-attention with Neural-representation and Synaptic-plasticity Network (HANS-Net)<n>HANS-Net combines hyperbolic convolutions for hierarchical geometric representation, a wavelet-inspired decomposition module for multi-scale texture learning, and an implicit neural representation branch.
- Score: 1.3149714289117207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate liver and tumor segmentation on abdominal CT images is critical for reliable diagnosis and treatment planning, but remains challenging due to complex anatomical structures, variability in tumor appearance, and limited annotated data. To address these issues, we introduce Hyperbolic-convolutions Adaptive-temporal-attention with Neural-representation and Synaptic-plasticity Network (HANS-Net), a novel segmentation framework that synergistically combines hyperbolic convolutions for hierarchical geometric representation, a wavelet-inspired decomposition module for multi-scale texture learning, a biologically motivated synaptic plasticity mechanism for adaptive feature enhancement, and an implicit neural representation branch to model fine-grained and continuous anatomical boundaries. Additionally, we incorporate uncertainty-aware Monte Carlo dropout to quantify prediction confidence and lightweight temporal attention to improve inter-slice consistency without sacrificing efficiency. Extensive evaluations of the LiTS dataset demonstrate that HANS-Net achieves a mean Dice score of 93.26%, an IoU of 88.09%, an average symmetric surface distance (ASSD) of 0.72 mm, and a volume overlap error (VOE) of 11.91%. Furthermore, cross-dataset validation on the 3D-IRCADb-01 dataset obtains an average Dice of 87.45%, IoU of 80.30%, ASSD of 1.525 mm, and VOE of 19.71%, indicating strong generalization across different datasets. These results confirm the effectiveness and robustness of HANS-Net in providing anatomically consistent, accurate, and confident liver and tumor segmentation.
Related papers
- Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images [0.0]
This work presents a hybrid machine and deep learning-based approach for classifying skin lesions.<n>It comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions.<n>Predictions are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics.
arXiv Detail & Related papers (2025-06-03T22:00:03Z) - STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis [9.511932098831322]
We propose a multimodaltemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (KCCM)<n>Our STG framework combines CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution edges and temporal evolution.<n>A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance.
arXiv Detail & Related papers (2025-05-06T02:41:34Z) - ScaleMAI: Accelerating the Development of Trusted Datasets and AI Models [46.80682547774335]
We propose ScaleMAI, an agent of AI-integrated data curation and annotation.<n>First, ScaleMAI creates a dataset of 25,362 CT scans, including per-voxel annotations for benign/malignant tumors and 24 anatomical structures.<n>Second, through progressive human-in-the-loop iterations, ScaleMAI provides Flagship AI Model that can approach the proficiency of expert annotators in detecting pancreatic tumors.
arXiv Detail & Related papers (2025-01-06T22:12:00Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
Liver cirrhosis, a leading cause of global mortality, requires precise segmentation of ROIs for effective disease monitoring and treatment planning.
Existing segmentation models often fail to capture complex feature interactions and generalize across diverse datasets.
We propose a novel synergistic theory that leverages complementary latent spaces for enhanced feature interaction modeling.
arXiv Detail & Related papers (2024-08-08T14:41:32Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.<n>The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.<n>The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation [7.1789008189318455]
LATUP-Net is a lightweight 3D ATtention U-Net with Parallel convolutions.
It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance.
It achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively.
arXiv Detail & Related papers (2024-04-09T00:05:45Z) - Enhancing mTBI Diagnosis with Residual Triplet Convolutional Neural
Network Using 3D CT [1.0621519762024807]
We introduce an innovative approach to enhance mTBI diagnosis using 3D Computed Tomography (CT) images.
We propose a Residual Triplet Convolutional Neural Network (RTCNN) model to distinguish between mTBI cases and healthy ones.
Our RTCNN model shows promising performance in mTBI diagnosis, achieving an average accuracy of 94.3%, a sensitivity of 94.1%, and a specificity of 95.2%.
arXiv Detail & Related papers (2023-11-23T20:41:46Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation [28.650980942429726]
We propose a volumetric vision transformer that follows two windowing strategies in attention for extracting fine features.
We trained and evaluated network architecture on the FeTS Challenge 2022 dataset.
Our performance on the online validation dataset is as follows: Dice Similarity Score of 81.71%, 91.38% and 85.40%.
arXiv Detail & Related papers (2022-09-16T03:55:48Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.