Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images
- URL: http://arxiv.org/abs/2506.03420v1
- Date: Tue, 03 Jun 2025 22:00:03 GMT
- Title: Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images
- Authors: Muhammad Zubair Hasan, Fahmida Yasmin Rifat,
- Abstract summary: This work presents a hybrid machine and deep learning-based approach for classifying skin lesions.<n>It comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions.<n>Predictions are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin cancer is among the most prevalent and life-threatening diseases worldwide, with early detection being critical to patient outcomes. This work presents a hybrid machine and deep learning-based approach for classifying malignant and benign skin lesions using the SLICE-3D dataset from ISIC 2024, which comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions. Our method combines vision transformers (EVA02) and our designed convolutional ViT hybrid (EdgeNeXtSAC) to extract robust features, employing a segmentation-assisted classification pipeline to enhance lesion localization. Predictions from these models are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics. To address class imbalance and improve generalization, we augment malignant cases with Stable Diffusion-generated synthetic lesions and apply a diagnosis-informed relabeling strategy to harmonize external datasets into a 3-class format. Using partial AUC (pAUC) above 80 percent true positive rate (TPR) as the evaluation metric, our approach achieves a pAUC of 0.1755 -- the highest among all configurations. These results underscore the potential of hybrid, interpretable AI systems for skin cancer triage in telemedicine and resource-constrained settings.
Related papers
- HANS-Net: Hyperbolic Convolution and Adaptive Temporal Attention for Accurate and Generalizable Liver and Tumor Segmentation in CT Imaging [1.3149714289117207]
Accurate liver and tumor segmentation on abdominal CT images is critical for reliable diagnosis and treatment planning.<n>We introduce Hyperbolic-convolutions Adaptive-temporal-attention with Neural-representation and Synaptic-plasticity Network (HANS-Net)<n>HANS-Net combines hyperbolic convolutions for hierarchical geometric representation, a wavelet-inspired decomposition module for multi-scale texture learning, and an implicit neural representation branch.
arXiv Detail & Related papers (2025-07-15T13:56:37Z) - Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound [4.662744612095781]
We propose a novel hybrid-view attention network for csPCa classification in 3D TRUS.<n>Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features.<n>Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy.
arXiv Detail & Related papers (2025-07-04T09:27:48Z) - Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation [0.0]
StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images.<n>These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification.<n>Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples.
arXiv Detail & Related papers (2025-05-26T09:26:36Z) - 3D Nephrographic Image Synthesis in CT Urography with the Diffusion Model and Swin Transformer [3.8557197729550485]
The proposed approach effectively synthesizes high-quality 3D nephrographic phase images.<n>It can be used to reduce radiation dose in CTU by 33.3% without compromising image quality.
arXiv Detail & Related papers (2025-02-26T23:22:31Z) - Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI [2.104687387907779]
This study presents an integrated approach leveraging the strengths of ensemble learning with hybrid transformer models and convolutional neural networks (CNNs)<n>Our methodology combines robust tumor segmentation capabilities, utilizing axial attention and transformer encoders for enhanced spatial relationship modeling.<n>The results demonstrate outstanding performance, evidenced by quantitative evaluations such as the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD95) for segmentation, and Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean-Square Error (MSE) for inpainting.
arXiv Detail & Related papers (2024-12-16T15:10:53Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.<n>The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.<n>The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.