論文の概要: From Observational Data to Clinical Recommendations: A Causal Framework for Estimating Patient-level Treatment Effects and Learning Policies
- arxiv url: http://arxiv.org/abs/2507.11381v1
- Date: Tue, 15 Jul 2025 14:50:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.159836
- Title: From Observational Data to Clinical Recommendations: A Causal Framework for Estimating Patient-level Treatment Effects and Learning Policies
- Title(参考訳): 観察データから臨床勧告へ:患者レベルの治療効果と学習方針を推定するための因果的枠組み
- Authors: Rom Gutman, Shimon Sheiba, Omer Noy Klien, Naama Dekel Bird, Amit Gruber, Doron Aronson, Oren Caspi, Uri Shalit,
- Abstract要約: 患者固有の治療レコメンデーションモデルを構築するためのフレームワークを提案する。
我々は、因果同定の重要な問題を含む安全性と妥当性に重点を置いている。
- 参考スコア(独自算出の注目度): 7.619520924233835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a framework for building patient-specific treatment recommendation models, building on the large recent literature on learning patient-level causal models and inspired by the target trial paradigm of Hernan and Robins. We focus on safety and validity, including the crucial issue of causal identification when using observational data. We do not provide a specific model, but rather a way to integrate existing methods and know-how into a practical pipeline. We further provide a real world use-case of treatment optimization for patients with heart failure who develop acute kidney injury during hospitalization. The results suggest our pipeline can improve patient outcomes over the current treatment regime.
- Abstract(参考訳): 本稿では,患者固有の治療レコメンデーションモデルを構築するためのフレームワークを提案し,患者レベルの因果モデルを学習し,HernanとRobinsのターゲットトライアルパラダイムに着想を得た。
我々は、観察データを使用する際の因果同定の重要な問題を含む、安全性と妥当性に焦点をあてる。
特定のモデルを提供するのではなく、既存のメソッドやノウハウを実践的なパイプラインに統合する方法を提供しています。
さらに,入院中に急性腎障害を発症した心不全患者に対して,治療の現実的利用について検討した。
その結果,現在の治療体制よりもパイプラインが患者の予後を改善する可能性が示唆された。
関連論文リスト
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
我々は、最適な治療体制を特定するための安全かつ解釈可能な枠組みを運用する。
本研究は患者の医療歴と薬理学的特徴に基づくパーソナライズされた治療戦略を支援する。
論文 参考訳(メタデータ) (2023-10-23T19:59:10Z) - Deep Attention Q-Network for Personalized Treatment Recommendation [1.6631602844999724]
パーソナライズされた治療レコメンデーションのためのDeep Attention Q-Networkを提案する。
深い強化学習フレームワーク内のTransformerアーキテクチャは、過去のすべての患者の観察を効率的に取り入れている。
実世界の敗血症と急性低血圧コホートにおけるモデルの評価を行い、最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-07-04T07:00:19Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
本稿では,臨床医がリアルタイム治療に最適な基準選択を推奨するのに役立つ,歴史的データに基づく新しい医療決定モデルを提案する。
本モデルでは, オフライン強化学習と深層強化学習を組み合わせることで, 医療における従来の強化学習が環境と相互作用できない問題に対処する。
論文 参考訳(メタデータ) (2022-06-22T16:17:21Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Health improvement framework for planning actionable treatment process
using surrogate Bayesian model [1.2468700211588881]
本研究は,データ駆動方式で治療プロセスを計画するための新しい枠組みを提案する。
このフレームワークの重要なポイントは、個人の健康改善のための「行動可能性」の評価である。
論文 参考訳(メタデータ) (2020-10-30T06:02:49Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
本研究の目的は, 介入を最適化する強化学習(RL)が, 学習方針の治験に対する規制に適合する経路を遡及的に得る枠組みを確立することである。
我々は,死の主な原因の一つであり,複雑で不透明な患者動態のため治療が困難である集中治療室の感染症に焦点を当てた。
論文 参考訳(メタデータ) (2020-03-13T20:31:47Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。