論文の概要: Real-World Summarization: When Evaluation Reaches Its Limits
- arxiv url: http://arxiv.org/abs/2507.11508v1
- Date: Tue, 15 Jul 2025 17:23:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.20686
- Title: Real-World Summarization: When Evaluation Reaches Its Limits
- Title(参考訳): 実世界の要約: 評価が限界に到達した時
- Authors: Patrícia Schmidtová, Ondřej Dušek, Saad Mahamood,
- Abstract要約: 従来のメトリクス、トレーニング可能なメソッド、LCM-as-a-judgeアプローチを比較します。
その結果、単語のような単純なメトリクスは、人間の判断と驚くほどよく重なることがわかった。
実世界のビジネスへの影響を分析すると、誤った情報やチェック不可能な情報が最大のリスクを生んでいることが分かる。
- 参考スコア(独自算出の注目度): 1.4197924572122094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine evaluation of faithfulness to input data in the context of hotel highlights: brief LLM-generated summaries that capture unique features of accommodations. Through human evaluation campaigns involving categorical error assessment and span-level annotation, we compare traditional metrics, trainable methods, and LLM-as-a-judge approaches. Our findings reveal that simpler metrics like word overlap correlate surprisingly well with human judgments (Spearman correlation rank of 0.63), often outperforming more complex methods when applied to out-of-domain data. We further demonstrate that while LLMs can generate high-quality highlights, they prove unreliable for evaluation as they tend to severely under- or over-annotate. Our analysis of real-world business impacts shows incorrect and non-checkable information pose the greatest risks. We also highlight challenges in crowdsourced evaluations.
- Abstract(参考訳): ホテルのハイライトの文脈における入力データに対する忠実度の評価について検討する: 宿泊施設の特徴を捉えた短いLCM生成要約。
分類的エラー評価とスパンレベルアノテーションを含む人的評価キャンペーンを通じて、従来のメトリクス、トレーニング可能な方法、LCM-as-a-judgeアプローチを比較した。
その結果、単語重複のような単純な指標は、人間の判断と驚くほどよく相関し(スピアマン相関ランク0.63)、ドメイン外データに適用した場合、より複雑な手法よりも優れていることが判明した。
さらに、LCMは高品質なハイライトを生成することができるが、過度な注釈付けや過度な注釈付けの傾向があるため、評価には信頼性が低いことを示す。
実世界のビジネスへの影響を分析すると、誤った情報やチェック不可能な情報が最大のリスクを生んでいることが分かる。
また、クラウドソースによる評価の課題も強調します。
関連論文リスト
- Reliable Annotations with Less Effort: Evaluating LLM-Human Collaboration in Search Clarifications [21.698669254520475]
本研究は,高品質な多次元データセットを活用した探索明確化作業のためのアノテーションに焦点を当てた。
最新のモデルでさえ、主観的またはきめ細かい評価タスクにおいて、人間レベルのパフォーマンスを再現するのに苦労していることを示す。
本稿では,信頼しきい値とモデル間不一致を利用して人間レビューを選択的に含む,シンプルで効果的なHuman-in-the-loop(HITL)ワークフローを提案する。
論文 参考訳(メタデータ) (2025-07-01T08:04:58Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
我々は、大規模言語モデルに対する現在の安全アライメント研究は、多くのノイズ源によって妨げられていると論じる。
本研究では,将来の攻撃・防衛用紙の評価において,ノイズやバイアスを低減させる一連のガイドラインを提案する。
論文 参考訳(メタデータ) (2025-03-04T12:55:07Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
人間の判断の代わりにLPMを用いてNLPモデルを評価する傾向が高まっている。
JUDGE-BENCHは20個のNLPデータセットのコレクションで、人間のアノテーションで、幅広い評価された特性やデータの種類をカバーしています。
アノテーションを複製できるため、オープンウェイトモデルとプロプライエタリモデルの両方をカバーする11の現在のLCMを評価します。
論文 参考訳(メタデータ) (2024-06-26T14:56:13Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は、ある人口層に対する大きな言語モデルの暗黙の偏見を厳格に評価する。
心理測定の原則にインスパイアされた我々は,3つの攻撃的アプローチ,すなわち,軽視,軽視,指導を提案する。
提案手法は,LLMの内部バイアスを競合ベースラインよりも効果的に引き出すことができる。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価するための自動評価器として有望な能力を示した。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PAIRS) は、LLMを用いた不確実性誘導検索に基づくランクアグリゲーション手法で、局所的にペアワイズ比較を行い、グローバルに候補テキストを効率よくランク付けする。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。