論文の概要: RSD-15K: A Large-Scale User-Level Annotated Dataset for Suicide Risk Detection on Social Media
- arxiv url: http://arxiv.org/abs/2507.11559v1
- Date: Mon, 14 Jul 2025 09:26:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.065283
- Title: RSD-15K: A Large-Scale User-Level Annotated Dataset for Suicide Risk Detection on Social Media
- Title(参考訳): RSD-15K:ソーシャルメディア上での自殺リスク検出のための大規模ユーザレベルアノテーションデータセット
- Authors: Shouwen Zheng, Yingzhi Tao, Taiqi Zhou,
- Abstract要約: ソーシャルメディアは、個人が感情を表現し助けを求めるための重要なプラットフォームである。
本稿では,15,000件のユーザレベルの投稿を含む大規模データセットを提案する。
既存のデータセットと比較すると、このデータセットは完全なユーザ投稿時間シーケンス情報を保持する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, cognitive and mental health (CMH) disorders have increasingly become an important challenge for global public health, especially the suicide problem caused by multiple factors such as social competition, economic pressure and interpersonal relationships among young and middle-aged people. Social media, as an important platform for individuals to express emotions and seek help, provides the possibility for early detection and intervention of suicide risk. This paper introduces a large-scale dataset containing 15,000 user-level posts. Compared with existing datasets, this dataset retains complete user posting time sequence information, supports modeling the dynamic evolution of suicide risk, and we have also conducted comprehensive and rigorous annotations on these datasets. In the benchmark experiment, we systematically evaluated the performance of traditional machine learning methods, deep learning models, and fine-tuned large language models. The experimental results show that our dataset can effectively support the automatic assessment task of suicide risk. Considering the sensitivity of mental health data, we also discussed the privacy protection and ethical use of the dataset. In addition, we also explored the potential applications of the dataset in mental health testing, clinical psychiatric auxiliary treatment, etc., and provided directional suggestions for future research work.
- Abstract(参考訳): 近年,認知・メンタルヘルス(CMH)障害は,特に社会的競争,経済圧力,対人関係などの複数の要因によって引き起こされる自殺問題において,世界的な公衆衛生にとって重要な課題となっている。
ソーシャルメディアは、個人が感情を表現し助けを求めるための重要なプラットフォームであり、自殺リスクの早期発見と介入の可能性を秘めている。
本稿では,15,000件のユーザレベルの投稿を含む大規模データセットを提案する。
既存のデータセットと比較して、このデータセットは、完全なユーザ投稿時間シーケンス情報を保持し、自殺リスクの動的進化のモデリングをサポートし、これらのデータセットに対して包括的な厳密なアノテーションも実施している。
ベンチマーク実験では、従来の機械学習手法、ディープラーニングモデル、微調整された大規模言語モデルの性能を体系的に評価した。
実験の結果,我々のデータセットは自殺リスクの自動評価タスクを効果的に支援できることがわかった。
また、メンタルヘルスデータの感度を考慮すると、データセットのプライバシー保護と倫理的利用についても検討した。
また,精神保健検査,臨床精神科補助治療等におけるデータセットの応用の可能性についても検討し,今後の研究課題への方向性を示唆した。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Digital Phenotyping for Adolescent Mental Health: A Feasibility Study Employing Machine Learning to Predict Mental Health Risk From Active and Passive Smartphone Data [2.2310516973117194]
本研究は,非クリニカル青年期の精神障害を予測するために,アクティブおよびパッシブスマートフォンデータを統合する可能性について検討した。
我々はMindcraftアプリを用いて、内因性障害、摂食障害、不眠症、自殺思考のリスクを予測する。
論文 参考訳(メタデータ) (2025-01-15T15:05:49Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [54.98321887435557]
本稿では, マルチモーダル入力特徴と臨床治験設計における8つの重要な予測課題を網羅した, 精巧にキュレートされた23個のAI対応データセットについて述べる。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
本研究では,自殺リスクの詳細な分類を目的とした,中国のソーシャルメディアデータセットを提案する。
事前訓練した7つのモデルについて, 自殺リスクが高い, 自殺リスクが少ない, 自殺リスクの細かい分類が0~10の2つのタスクで評価された。
ディープラーニングモデルは高い自殺リスクと低い自殺リスクを区別する上で優れた性能を示し、最良のモデルはF1スコア88.39%である。
論文 参考訳(メタデータ) (2024-04-19T06:58:51Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
自動自殺リスク評価のための非侵襲的音声ベースアプローチを提案する。
我々は、wav2vec、解釈可能な音声・音響特徴、深層学習に基づくスペクトル表現の3つの特徴セットを抽出する。
我々の最も効果的な音声モデルは、6.6.2,%$のバランスの取れた精度を達成する。
論文 参考訳(メタデータ) (2024-04-18T12:33:57Z) - Exploration of Adolescent Depression Risk Prediction Based on Census
Surveys and General Life Issues [7.774933303698165]
青年期におけるうつ病の頻度は着実に増加している。
尺度や面接に依存する従来の診断方法は、特に若者のうつ病を検出するには不十分である。
本研究では,高度不均衡な高次元データを管理する手法と,データ構造特性に合わせた適応予測手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T09:14:25Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - An Annotated Dataset for Explainable Interpersonal Risk Factors of
Mental Disturbance in Social Media Posts [0.0]
ソーシャルメディア上での精神障害に影響を及ぼす人為的リスクファクター(IRF)の分類と説明を伴う注釈付きデータセットの構築とリリースを行う。
我々は,TBeとPBuのパターンをユーザの歴史的ソーシャルメディアプロファイルの感情スペクトルで検出することにより,将来的な研究方向のベースラインモデルを構築し,リアルタイムなパーソナライズされたAIモデルを開発する。
論文 参考訳(メタデータ) (2023-05-30T04:08:40Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
不安障害は、子供と成人の両方に影響を及ぼす最も一般的な精神医学的問題である。
スマートフォンから受動的かつ控えめなデータ収集を活用することは、古典的な方法の代替となるかもしれない。
eWellnessは、個人デバイスのセンサとユーザログデータの完全な適合性を、連続的かつ受動的に追跡するために設計された、実験的なモバイルアプリケーションである。
論文 参考訳(メタデータ) (2020-08-09T20:22:52Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。