論文の概要: TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets
- arxiv url: http://arxiv.org/abs/2407.00631v3
- Date: Sun, 15 Jun 2025 22:48:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:44.589787
- Title: TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets
- Title(参考訳): TrialBench: マルチモーダル人工知能対応の臨床試験データセット
- Authors: Jintai Chen, Yaojun Hu, Mingchen Cai, Yingzhou Lu, Yue Wang, Xu Cao, Miao Lin, Hongxia Xu, Jian Wu, Cao Xiao, Jimeng Sun, Yuqiang Li, Lucas Glass, Kexin Huang, Marinka Zitnik, Tianfan Fu,
- Abstract要約: 本稿では, マルチモーダル入力特徴と臨床治験設計における8つの重要な予測課題を網羅した, 精巧にキュレートされた23個のAI対応データセットについて述べる。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
- 参考スコア(独自算出の注目度): 54.98321887435557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trials are pivotal for developing new medical treatments but typically carry risks such as patient mortality and enrollment failure that waste immense efforts spanning over a decade. Applying artificial intelligence (AI) to predict key events in clinical trials holds great potential for providing insights to guide trial designs. However, complex data collection and question definition requiring medical expertise have hindered the involvement of AI thus far. This paper tackles these challenges by presenting a comprehensive suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design, encompassing prediction of trial duration, patient dropout rate, serious adverse event, mortality rate, trial approval outcome, trial failure reason, drug dose finding, design of eligibility criteria. Furthermore, we provide basic validation methods for each task to ensure the datasets' usability and reliability. We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design, ultimately advancing clinical trial research and accelerating medical solution development.
- Abstract(参考訳): 臨床試験は、新しい治療を開発する上で重要であるが、典型的には10年以上にわたる膨大な努力を無駄にする患者死亡や入学失敗のようなリスクを負う。
臨床試験における重要な事象を予測するために人工知能(AI)を適用することは、トライアルデザインをガイドするための洞察を提供する大きな可能性を秘めている。
しかし、複雑なデータ収集と専門知識を必要とする質問定義は、これまでAIの関与を妨げてきた。
本稿では, 臨床治験設計における多モード入力特徴と8つの重要な予測課題を網羅した, 厳密にキュレートされた23種類のAI対応データセットと, 治験期間の予測, 患者退院率, 重篤な有害事象, 死亡率, 治験失敗原因, 薬物線量検出, 許容基準の設計を含む8つの重要な予測課題を提示することによって, これらの課題に対処する。
さらに、データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になると、臨床試験設計のための高度なAIアプローチの開発が促進され、最終的に臨床試験研究が進展し、医療ソリューション開発が加速すると予想する。
関連論文リスト
- Leveraging Generative AI Through Prompt Engineering and Rigorous Validation to Create Comprehensive Synthetic Datasets for AI Training in Healthcare [0.0]
GPT-4 APIは、この制限を克服するための高品質な合成データセットを生成するために使用された。
得られたデータには、医療提供者の詳細、病院部門、病棟、ベッド割り当て、患者人口統計、緊急連絡先、バイタルサイン、免疫、アレルギー、医療履歴、アポイントメント、病院訪問、検査、診断、治療計画、医療ノート、訪問ログ、退院サマリー、レファラルが含まれていた。
論文 参考訳(メタデータ) (2025-04-29T16:37:34Z) - Systematic Literature Review on Clinical Trial Eligibility Matching [0.24554686192257422]
レビューでは、説明可能なAIと標準化されたオントロジーがクリニックの信頼を高め、採用を広げる方法が強調されている。
臨床治験採用におけるNLPの変革的ポテンシャルを十分に実現するためには、高度な意味的および時間的表現、拡張されたデータ統合、厳密な予測的評価のさらなる研究が必要である。
論文 参考訳(メタデータ) (2025-03-02T11:45:50Z) - Can artificial intelligence predict clinical trial outcomes? [5.326858857564308]
本研究では,大言語モデル(LLM)の臨床試験結果の予測能力について検討した。
我々は、バランスの取れた精度、特異性、リコール、マシューズ相関係数(MCC)などの指標を用いてモデルの性能を比較する。
高い複雑さを特徴とする腫瘍学の試行は、全てのモデルで難しいままである。
論文 参考訳(メタデータ) (2024-11-26T17:05:27Z) - Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation [16.067841125848688]
本稿では, 大規模言語モデルを利用した新規な検索・推論フレームワークを提案する。
urlClinicalTrials.govデータベースによる実際の臨床試験で実施された実験は、我々の合成データが実際のデータセットを効果的に増大させることができることを示した。
本研究は, 臨床研究を加速し, 患者プライバシの倫理基準を高くする上で, 総合臨床試験生成のためのLCMが期待できることを示唆する。
論文 参考訳(メタデータ) (2024-10-16T11:46:32Z) - TrialSynth: Generation of Synthetic Sequential Clinical Trial Data [21.799655542003677]
変動オートエンコーダ(VAE)は、合成時系列臨床試験データを生成する際の課題に対処するために設計された。
実験の結果,Trial Synthは他の同等の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-11T08:20:30Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。