Quantum circuits are just a phase
- URL: http://arxiv.org/abs/2507.11676v1
- Date: Tue, 15 Jul 2025 19:31:53 GMT
- Title: Quantum circuits are just a phase
- Authors: Chris Heunen, Louis Lemonnier, Christopher McNally, Alex Rice,
- Abstract summary: We introduce a novel quantum programming language for generating unitaries from "just a phase"<n>This minimal language lifts the focus from quantum gates to eigendecomposition, conjugation, and controlled unitaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum programs today are written at a low level of abstraction - quantum circuits akin to assembly languages - and even advanced quantum programming languages essentially function as circuit description languages. This state of affairs impedes scalability, clarity, and support for higher-level reasoning. More abstract and expressive quantum programming constructs are needed. To this end, we introduce a novel yet simple quantum programming language for generating unitaries from "just a phase"; we combine a (global) phase operation that captures phase shifts with a quantum analogue of the "if let" construct that captures subspace selection via pattern matching. This minimal language lifts the focus from quantum gates to eigendecomposition, conjugation, and controlled unitaries; common building blocks in quantum algorithm design. We demonstrate several aspects of the expressive power of our language in several ways. Firstly, we establish that our representation is universal by deriving a universal quantum gate set. Secondly, we show that important quantum algorithms can be expressed naturally and concisely, including Grover's search algorithm, Hamiltonian simulation, Quantum Fourier Transform, Quantum Signal Processing, and the Quantum Eigenvalue Transformation. Furthermore, we give clean denotational semantics grounded in categorical quantum mechanics. Finally, we implement a prototype compiler that efficiently translates terms of our language to quantum circuits, and prove that it is sound with respect to these semantics. Collectively, these contributions show that this construct offers a principled and practical step toward more abstract and structured quantum programming.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.<n>We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.<n>We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Exploring Gamification in Quantum Computing: The Qubit Factory [0.0]
Qubit Factory is an engineering-style puzzle game based on a gamified quantum circuit simulator.
It introduces an intuitive visual language for representing quantum states, gates and circuits.
Each task requires the user to construct and run an appropriate classical/quantum circuit built from a small selection of components.
arXiv Detail & Related papers (2024-06-17T18:08:53Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Qwerty: A Basis-Oriented Quantum Programming Language [0.43981305860983716]
We present Qwerty, a new quantum programming language that allows programmers to manipulate qubits more expressively than gates and trace programs without bra-ket notation.<n>Qwerty is a powerful framework for high-level quantum-classical computation.
arXiv Detail & Related papers (2024-04-19T03:13:43Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Qafny: A Quantum-Program Verifier [39.47005122712576]
We present Qafny, an automated proof system for verifying quantum programs.
At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations.
We show how Qafny can efficiently verify important quantum algorithms, including quantum-walk algorithms, Grover's algorithm, and Shor's algorithm.
arXiv Detail & Related papers (2022-11-11T18:50:52Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Qunity: A Unified Language for Quantum and Classical Computing (Extended Version) [3.862247454265945]
We introduce Qunity, a new quantum programming language.<n>Qunity treats quantum computing as a natural generalization of classical computing.<n>We show how Qunity can cleanly express several quantum algorithms.
arXiv Detail & Related papers (2022-04-26T15:34:22Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP)
We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure.
We provide references for supporting empirical evidence and formal statements concerning mathematical generality.
arXiv Detail & Related papers (2020-12-07T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.