論文の概要: Fiducial Matching: Differentially Private Inference for Categorical Data
- arxiv url: http://arxiv.org/abs/2507.11762v1
- Date: Tue, 15 Jul 2025 21:56:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.164105
- Title: Fiducial Matching: Differentially Private Inference for Categorical Data
- Title(参考訳): Fiducial Matching:カテゴリーデータに対する差分プライベート推論
- Authors: Ogonnaya Michael Romanus, Younes Boulaguiem, Roberto Molinari,
- Abstract要約: 推測統計的推論は、いまだに微分プライベート(DP)設定における調査のオープン領域である。
本稿では,シミュレーションに基づくマッチング手法を提案する。
我々は,全国調査に共通する分類(ノミナル)データの分析に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of statistical inference, which includes the building of confidence intervals and tests for parameters and effects of interest to a researcher, is still an open area of investigation in a differentially private (DP) setting. Indeed, in addition to the randomness due to data sampling, DP delivers another source of randomness consisting of the noise added to protect an individual's data from being disclosed to a potential attacker. As a result of this convolution of noises, in many cases it is too complicated to determine the stochastic behavior of the statistics and parameters resulting from a DP procedure. In this work, we contribute to this line of investigation by employing a simulation-based matching approach, solved through tools from the fiducial framework, which aims to replicate the data generation pipeline (including the DP step) and retrieve an approximate distribution of the estimates resulting from this pipeline. For this purpose, we focus on the analysis of categorical (nominal) data that is common in national surveys, for which sensitivity is naturally defined, and on additive privacy mechanisms. We prove the validity of the proposed approach in terms of coverage and highlight its good computational and statistical performance for different inferential tasks in simulated and applied data settings.
- Abstract(参考訳): 統計的推論の課題は、信頼区間の構築、パラメータの検証、研究者への関心の影響などであり、差分的私的(DP)環境での調査の領域である。
実際、データサンプリングによるランダム性に加えて、DPは個人データの潜在的な攻撃者への開示を防ぐために追加されたノイズからなる別のランダム性ソースを提供する。
このようなノイズの畳み込みの結果、DPプロシージャから得られる統計とパラメータの確率的挙動を決定するには複雑すぎる場合が多い。
本研究では,データ生成パイプライン(DPステップを含む)を複製し,このパイプラインから得られた推定値の近似分布を検索することを目的とした,シミュレーションベースのマッチング手法を用いて,本研究の行程に寄与する。
本研究の目的は,自然に感度が定義される全国調査に共通する分類(ノミナル)データの解析と,付加的なプライバシー機構に焦点をあてることである。
我々は,提案手法の有効性を網羅的に証明し,シミュレーションおよび適用データ設定において,異なる推論タスクに対して,その優れた計算性能と統計的性能を強調した。
関連論文リスト
- Benchmarking Fraud Detectors on Private Graph Data [70.4654745317714]
現在、多くの種類の不正は、グラフ上で動く自動検出アルゴリズムによって部分的に管理されている。
データ保有者が不正検知器の開発を第三者にアウトソースしようとするシナリオを考察する。
サードパーティは、不正検出をデータ保持者に送信し、これらのアルゴリズムをプライベートデータセットで評価し、その結果を公表する。
本システムに対する現実的なプライバシ攻撃を提案し,評価結果のみに基づいて個人データの匿名化を可能にする。
論文 参考訳(メタデータ) (2025-07-30T03:20:15Z) - Statistical Inference for Differentially Private Stochastic Gradient Descent [14.360996967498002]
本稿では,既存統計手法とDP-SGDとのギャップを埋める。
DP-SGDの出力に対して, 分散は統計的, サンプリング, プライバシによって引き起こされる成分に分解されることを示す。
有効な信頼区間を構築するために,プラグイン法とランダムスケーリング法という2つの手法を提案する。
論文 参考訳(メタデータ) (2025-07-28T06:45:15Z) - Verifying Differentially Private Median Estimation [4.083860866484599]
そこで本研究では,zk-SNARKをベースとした最初の検証可能な個人中央値推定手法を提案する。
提案方式では,指数関数機構と中央値推定のためのユーティリティ関数を演算回路に結合する。
論文 参考訳(メタデータ) (2025-05-22T05:31:22Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Inference With Combining Rules From Multiple Differentially Private Synthetic Datasets [0.0]
DIPSデータセットの分析にルールを組み合わせることによって,プロシージャの適用性を検討する。
我々の経験的実験により、提案された組み合わせルールは、特定の状況において正確な推論を提供するが、すべての場合において正確な推論はできないことが示された。
論文 参考訳(メタデータ) (2024-05-08T02:33:35Z) - Simulation-based Bayesian Inference from Privacy Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Evaluating the Impact of Local Differential Privacy on Utility Loss via
Influence Functions [11.504012974208466]
我々は、特定のプライバシパラメータ値がモデルのテスト損失にどのように影響するかについて、インフルエンス関数が洞察を与える能力を示す。
提案手法により,データキュレーターは,プライバシ・ユーティリティのトレードオフに最も適したプライバシパラメータを選択できる。
論文 参考訳(メタデータ) (2023-09-15T18:08:24Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling [14.066813980992132]
データプライバシの意識の高まりに伴い、プライベートバージョンの信頼区間の開発が注目されている。
最近の研究は個人的信頼区間で行われているが、個人的信頼区間では厳密な方法論が研究されていない。
階層化されたランダムサンプリングの下で,信頼区間を構成するための3つの差分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-19T21:25:41Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。