論文の概要: Predicting Delayed Trajectories Using Network Features: A Study on the Dutch Railway Network
- arxiv url: http://arxiv.org/abs/2507.11776v1
- Date: Tue, 15 Jul 2025 22:30:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.174186
- Title: Predicting Delayed Trajectories Using Network Features: A Study on the Dutch Railway Network
- Title(参考訳): ネットワーク特徴を用いた遅延軌道予測:オランダ鉄道網に関する研究
- Authors: Merel Kampere, Ali Mohammed Mansoor Alsahag,
- Abstract要約: 本研究は, トポロジ的特徴に着目したXGBoostを用いて, オランダの鉄道網における遅延予測研究のギャップを解消するものである。
現在の研究は主に短期的な予測を強調し、リップル効果の緩和に不可欠なネットワーク全体のパターンを無視している。
この研究は、オランダ鉄道における遅延を予測するために、最初は急速に変化する米国の航空網の進化を予測するために設計された既存の方法論を実装し、改善している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Dutch railway network is one of the busiest in the world, with delays being a prominent concern for the principal passenger railway operator NS. This research addresses a gap in delay prediction studies within the Dutch railway network by employing an XGBoost Classifier with a focus on topological features. Current research predominantly emphasizes short-term predictions and neglects the broader network-wide patterns essential for mitigating ripple effects. This research implements and improves an existing methodology, originally designed to forecast the evolution of the fast-changing US air network, to predict delays in the Dutch Railways. By integrating Node Centrality Measures and comparing multiple classifiers like RandomForest, DecisionTree, GradientBoosting, AdaBoost, and LogisticRegression, the goal is to predict delayed trajectories. However, the results reveal limited performance, especially in non-simultaneous testing scenarios, suggesting the necessity for more context-specific adaptations. Regardless, this research contributes to the understanding of transportation network evaluation and proposes future directions for developing more robust predictive models for delays.
- Abstract(参考訳): オランダの鉄道網は世界で最も忙しい路線の一つであり、主要な旅客鉄道事業者NSにとって遅延は顕著な懸念事項である。
本研究は, トポロジ的特徴に着目したXGBoost分類器を用いて, オランダの鉄道網における遅延予測研究のギャップを解消するものである。
現在の研究は主に短期的な予測を強調し、リップル効果の緩和に不可欠なネットワーク全体のパターンを無視している。
この研究は、オランダ鉄道における遅延を予測するために、最初は急速に変化する米国の航空網の進化を予測するために設計された既存の方法論を実装し、改善している。
Node Centrality Measuresを統合し、RandomForest、DecisionTree、GradientBoosting、AdaBoost、LogisticRegressionといった複数の分類器を比較することで、遅延トラジェクトリを予測することが目標だ。
しかし、その結果は、特に非同時テストシナリオにおいて、限られた性能を示し、よりコンテキスト固有の適応の必要性を示唆している。
いずれにせよ,本研究は交通ネットワーク評価の理解に寄与し,より堅牢な遅延予測モデル開発に向けた今後の方向性を提案する。
関連論文リスト
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
軌道予測は、交通参加者の将来の動きを予測することを目的として、自動運転に不可欠である。
伝統的な方法は通常、エージェントの軌道に関する全体論的推論を行い、エージェント間の難易度の違いを無視する。
エージェント間の予測難易度差を利用したマルチエージェント軌道予測のためのDGFNet(Difficulty-Guided Feature Enhancement)を提案する。
論文 参考訳(メタデータ) (2024-07-26T07:04:30Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
マルチモーダル軌道予測のための木サンプリングを用いたゴールガイド拡散モデルを提案する。
2段階のツリーサンプリングアルゴリズムが提案され、一般的な特徴を活用して推論時間を短縮し、マルチモーダル予測の精度を向上させる。
実験により,提案フレームワークは,公開データセットにおけるリアルタイム推論速度と同等の最先端性能を達成できることが実証された。
論文 参考訳(メタデータ) (2023-11-25T03:55:06Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
本研究では,長期交通パラメータ予測問題に対処する新しい時空間ニューラルネットワークアーキテクチャを提案する。
注意機構は、遠方の入力から重要な情報を失うことなく、長期的な予測性能を保証する可能性がある。
論文 参考訳(メタデータ) (2022-10-01T05:58:22Z) - A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing [1.0312968200748118]
ライドシェアリングは、ドライバーと乗客の両方にとって利便性とコスト効率のため、世界的に人気がある。
RSODP(Origin-Destination Prediction for Ride Share)問題の目的は、将来の配車要求を予測し、事前に車両のスケジュールを提供することである。
既存の予測モデルの多くはDeep Learningを利用しているが、空間力学と時間力学の両方を効果的に考慮していない。
論文 参考訳(メタデータ) (2022-07-11T08:41:24Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
短期の旅客フロー予測は、都市交通システムを管理する上で重要であるが、難しい課題である。
本稿では,予測精度が高く,高い効率,メモリ占有率の低い,ディープラーニングに基づく時間グラフ生成対向ネットワーク(STG-GAN)モデルを提案する。
本研究は、特に現実の応用の観点から、短期の乗客フロー予測を行う上で、批判的な経験を提供することができる。
論文 参考訳(メタデータ) (2022-02-10T13:18:11Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
リカレントニューラルネットワークとフィードフォワードディープネットワークという2つの一般的な手法は、粗い動きの傾向を予測することができる。
本稿では,新たな逆誤差増大を伴う簡易かつ効果的な粗大きめ機構に従えば,ARNet(Adversarial Refinement Network)を提案する。
論文 参考訳(メタデータ) (2020-11-23T05:42:20Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
フィードフォワードネットワーク(FFN, FFN, 複数要素自己認識(FMA-ETA)に基づく新しいフレームワークを提案する。
異なるカテゴリの特徴に対処し,情報を意図的に集約する,新しい多要素自己認識機構を提案する。
実験の結果、FMA-ETAは予測精度において最先端の手法と競合し、推論速度は大幅に向上した。
論文 参考訳(メタデータ) (2020-06-07T08:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。