Predicting Delayed Trajectories Using Network Features: A Study on the Dutch Railway Network
- URL: http://arxiv.org/abs/2507.11776v1
- Date: Tue, 15 Jul 2025 22:30:36 GMT
- Title: Predicting Delayed Trajectories Using Network Features: A Study on the Dutch Railway Network
- Authors: Merel Kampere, Ali Mohammed Mansoor Alsahag,
- Abstract summary: This research addresses a gap in delay prediction studies within the Dutch railway network by employing an XGBoost with a focus on topological features.<n>Current research predominantly emphasizes short-term predictions and neglects the broader network-wide patterns essential for mitigating ripple effects.<n>This research implements and improves an existing methodology, originally designed to forecast the evolution of the fast-changing US air network, to predict delays in the Dutch Railways.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Dutch railway network is one of the busiest in the world, with delays being a prominent concern for the principal passenger railway operator NS. This research addresses a gap in delay prediction studies within the Dutch railway network by employing an XGBoost Classifier with a focus on topological features. Current research predominantly emphasizes short-term predictions and neglects the broader network-wide patterns essential for mitigating ripple effects. This research implements and improves an existing methodology, originally designed to forecast the evolution of the fast-changing US air network, to predict delays in the Dutch Railways. By integrating Node Centrality Measures and comparing multiple classifiers like RandomForest, DecisionTree, GradientBoosting, AdaBoost, and LogisticRegression, the goal is to predict delayed trajectories. However, the results reveal limited performance, especially in non-simultaneous testing scenarios, suggesting the necessity for more context-specific adaptations. Regardless, this research contributes to the understanding of transportation network evaluation and proposes future directions for developing more robust predictive models for delays.
Related papers
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
Trajectory prediction is crucial for autonomous driving as it aims to forecast future movements of traffic participants.<n>Traditional methods usually perform holistic inference on trajectories of agents, neglecting the differences in difficulty among agents.<n>This proposes a novel Difficulty-Guided Feature Enhancement (DGFNet), which leverages the prediction difficulty differences among agents for multi-agent trajectory prediction.
arXiv Detail & Related papers (2024-07-26T07:04:30Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.<n>A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.<n> Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
This study proposes a new spatial-temporal neural network architecture to handle the long-term traffic parameters forecasting issue.
The attention mechanism potentially guarantees long-term prediction performance without significant information loss from distant inputs.
arXiv Detail & Related papers (2022-10-01T05:58:22Z) - A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing [1.0312968200748118]
Ridesharing has received global popularity due to its convenience and cost efficiency for both drivers and passengers.
The goal of the RSODP (Origin-Destination Prediction for Ridesharing) problem is to predict the future ridesharing requests and provide schedules for vehicles ahead of time.
Most of existing prediction models utilise Deep Learning, however they fail to effectively consider both spatial and temporal dynamics.
arXiv Detail & Related papers (2022-07-11T08:41:24Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
Short-term passenger flow prediction is an important but challenging task for better managing urban rail transit systems.
We propose a novel deep learning-basedtemporal graph generative adversarial network (STG-GAN) model with higher prediction accuracy, higher efficiency, and lower memory occupancy.
This study can provide critical experience in conducting short-term passenger flow predictions, especially from the perspective of real-world applications.
arXiv Detail & Related papers (2022-02-10T13:18:11Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Multi-Airport Delay Prediction with Transformers [0.0]
Temporal Fusion Transformer (TFT) was proposed to predict departure and arrival delays simultaneously for multiple airports.
This approach can capture complex temporal dynamics of the inputs known at the time of prediction and then forecast selected delay metrics up to four hours into the future.
arXiv Detail & Related papers (2021-11-04T21:58:11Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
We propose a novel framework based on feed-forward network (FFN) for ETA, FFN with Multi-factor self-Attention (FMA-ETA)
The novel Multi-factor self-attention mechanism is proposed to deal with different category features and aggregate the information purposefully.
Experiments show FMA-ETA is competitive with state-of-the-art methods in terms of the prediction accuracy with significantly better inference speed.
arXiv Detail & Related papers (2020-06-07T08:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.