論文の概要: The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
- arxiv url: http://arxiv.org/abs/2507.11810v1
- Date: Wed, 16 Jul 2025 00:11:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.18729
- Title: The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
- Title(参考訳): 科学革新における大規模言語モデルの役割--評価者・協力者・科学者
- Authors: Haoxuan Zhang, Ruochi Li, Yang Zhang, Ting Xiao, Jiangping Chen, Junhua Ding, Haihua Chen,
- Abstract要約: 科学革新は、LLM(Large Language Models)の急速な進歩によって、パラダイムシフトが進んでいる。
本調査では,3つの階層レベル – 評価,コラボレーション,科学者 – にまたがる科学革新におけるLLMの役割を,包括的に分類する枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.7803247326675162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.
- Abstract(参考訳): 科学革新は、LLM(Large Language Models)の急速な進歩によって、パラダイムシフトが進んでいる。
科学は、情報過負荷、学際的なサイロ、従来の研究手法でのリターンの減少といった課題に直面しているため、LSMは科学的なワークフローの強化だけでなく、イノベーションプロセスへの参加や、潜在的に先導する能力を持つ強力なエージェントとして出現している。
既存の調査は主に科学的研究や発見における様々な視点、フレーズ、タスクに焦点を当てているが、LLMの変革的ポテンシャルと役割の分化を理解するには限界がある。
本調査では,3つの階層レベル – 評価,コラボレーション,科学者 – にまたがる科学革新におけるLLMの役割を,包括的に分類する枠組みを提案する。
我々は、構造化された科学的研究プロセスとオープンな科学的発見へのLLMの貢献を区別し、各レベルで能力境界、評価基準、人間とAIの相互作用パターンを明らかにする統一された分類法を提供する。
この調査は、現在の方法論、ベンチマーク、システム、評価メトリクスの広範な分析を通じて、LLM駆動の科学革新に関する詳細な、体系的な合成を提供する。
我々は,LLMを既存のプロセスを自動化するツールとしてだけでなく,科学自体の認識論的基盤を再構築できる触媒として提示する。
この調査は、将来の研究のための概念的明確性、実践的ガイダンス、理論的基礎を提供すると同時に、ますます自律的なAI駆動科学の追求におけるオープンな課題と倫理的考察を強調している。
この調査に関連するリソースはGitHubで、https://github.com/haoxuan-unt2024/llm4innovation.comでアクセスすることができる。
関連論文リスト
- Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team [53.38438460574943]
IDVSCIは、大規模言語モデル(LLM)上に構築されたマルチエージェントフレームワークである。
動的知識交換機構とデュアルダイバーシティ・レビュー・パラダイムという2つの重要なイノベーションが組み込まれている。
結果は、IDVSCIが2つのデータセットで常に最高のパフォーマンスを達成していることを示している。
論文 参考訳(メタデータ) (2025-06-23T07:12:08Z) - Advancing the Scientific Method with Large Language Models: From Hypothesis to Discovery [35.888956949646]
大規模言語モデル (LLM) は科学的方法を変えて科学的研究を変革している。
LLMは、特に化学や生物学において、実験的な設計、データ分析、生産性の向上に関与している。
AI駆動科学への移行は、創造性、監視、責任に関する倫理的な疑問を提起する。
論文 参考訳(メタデータ) (2025-05-22T10:05:48Z) - From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery [43.31110556077432]
大規模言語モデル(LLM)は科学的発見のパラダイムシフトを触媒している。
この調査は、この急成長する分野を体系的に分析し、科学におけるLLMの役割の変化とエスカレーション能力に重点を置いている。
論文 参考訳(メタデータ) (2025-05-19T15:41:32Z) - SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、人間とAIのコラボレーションに新たな可能性をもたらしている。
我々はSciSciGPTを紹介した。SciSciGPTはオープンソースのプロトタイプAIコラボレータで、科学の科学をテストベッドとして利用し、LLMを利用した研究ツールの可能性を探る。
論文 参考訳(メタデータ) (2025-04-07T23:19:39Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Position: Multimodal Large Language Models Can Significantly Advance Scientific Reasoning [51.11965014462375]
MLLM(Multimodal Large Language Models)は、テキスト、画像、その他のモダリティを統合する。
本稿では,MLLMが数学,物理,化学,生物学などの分野にまたがる科学的推論を著しく前進させることができることを論じる。
論文 参考訳(メタデータ) (2025-02-05T04:05:27Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。