論文の概要: SciSciGPT: Advancing Human-AI Collaboration in the Science of Science
- arxiv url: http://arxiv.org/abs/2504.05559v1
- Date: Mon, 07 Apr 2025 23:19:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:17.260968
- Title: SciSciGPT: Advancing Human-AI Collaboration in the Science of Science
- Title(参考訳): SciSciGPT:科学における人間とAIの連携の促進
- Authors: Erzhuo Shao, Yifang Wang, Yifan Qian, Zhenyu Pan, Han Liu, Dashun Wang,
- Abstract要約: 大規模言語モデル(LLM)とAIエージェントの最近の進歩は、人間とAIのコラボレーションに新たな可能性をもたらしている。
我々はSciSciGPTを紹介した。SciSciGPTはオープンソースのプロトタイプAIコラボレータで、科学の科学をテストベッドとして利用し、LLMを利用した研究ツールの可能性を探る。
- 参考スコア(独自算出の注目度): 7.592219145267612
- License:
- Abstract: The increasing availability of large-scale datasets has fueled rapid progress across many scientific fields, creating unprecedented opportunities for research and discovery while posing significant analytical challenges. Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration, offering powerful tools to navigate this complex research landscape. In this paper, we introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools. SciSciGPT automates complex workflows, supports diverse analytical approaches, accelerates research prototyping and iteration, and facilitates reproducibility. Through case studies, we demonstrate its ability to streamline a wide range of empirical and analytical research tasks while highlighting its broader potential to advance research. We further propose an LLM Agent capability maturity model for human-AI collaboration, envisioning a roadmap to further improve and expand upon frameworks like SciSciGPT. As AI capabilities continue to evolve, frameworks like SciSciGPT may play increasingly pivotal roles in scientific research and discovery, unlocking further opportunities. At the same time, these new advances also raise critical challenges, from ensuring transparency and ethical use to balancing human and AI contributions. Addressing these issues may shape the future of scientific inquiry and inform how we train the next generation of scientists to thrive in an increasingly AI-integrated research ecosystem.
- Abstract(参考訳): 大規模なデータセットが利用可能になったことで、多くの科学分野が急速に進歩し、研究や発見に前例のない機会を生み出し、重要な分析上の課題を提起した。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、人間とAIのコラボレーションに新たな可能性をもたらし、この複雑な研究環境をナビゲートするための強力なツールを提供している。
本稿では,LLMを活用した研究ツールの可能性を探るため,科学科学をテストベッドとして利用する,オープンソースのプロトタイプAIコラボレータであるSciSciGPTを紹介する。
SciSciGPTは複雑なワークフローを自動化し、多様な分析アプローチをサポートし、研究のプロトタイピングとイテレーションを加速し、再現性を促進する。
ケーススタディを通じて、幅広い経験的および分析的な研究課題を合理化しつつ、研究を進める幅広い可能性を強調しながら、その能力を実証する。
我々はさらに、SciSciGPTのようなフレームワークをさらに改善し拡張するためのロードマップを構想する、人間とAIのコラボレーションのためのLLMエージェント能力成熟モデルを提案する。
AIの能力が進化を続けるにつれ、SciSciGPTのようなフレームワークは科学研究や発見においてますます重要な役割を担い、さらなる機会を解放する。
同時に、これらの新たな進歩は、透明性と倫理的使用の確保から、人間とAIのコントリビューションのバランスを取ることに至るまで、重要な課題も提起している。
これらの問題に対処すれば、科学調査の未来を形作って、AI統合研究のエコシステムの中で、次世代の科学者をいかに成長させるかを教えてくれるかもしれない。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
本稿では、科学的な課題に応用された大規模言語モデルやその他のAI技術の最近の進歩に注目し、科学的な発見のためのAIの現状について考察する。
そして、科学的な発見のためのより包括的なAIシステムの開発に向けた重要な課題と研究の方向性を概説する。
論文 参考訳(メタデータ) (2024-12-16T03:52:20Z) - Bridging AI and Science: Implications from a Large-Scale Literature Analysis of AI4Science [25.683422870223076]
本稿では,AI4Science文献の大規模解析を行う。
我々は,AI手法と科学的問題の主な相違点を定量的に強調する。
我々は,AIと科学コミュニティの協力を促進する可能性と課題について検討する。
論文 参考訳(メタデータ) (2024-11-27T00:40:51Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
科学者たちは、実験や研究の目標を拡大するために、機器、自動化、協調ツールの進歩をますます活用している。
神経科学を含む様々な科学分野は、コラボレーション、インスピレーション、自動化を強化するための重要な技術を採用してきた。
厳密な科学的操作の原理を説明する5段階の能力成熟度モデルを導入する。
論文 参考訳(メタデータ) (2023-12-29T21:37:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
AIとML技術による研究は、しばしば非同期の目標とタイムラインを備えたさまざまな設定で動作します。
我々は、NASAとESAの民間パートナーシップの下で、AIアクセラレータであるFrontier Development Lab(FDL)のケーススタディを実行する。
FDL研究は、AI研究の責任ある開発、実行、普及に基礎を置く原則的な実践に従う。
論文 参考訳(メタデータ) (2020-11-09T21:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。