ProtoConNet: Prototypical Augmentation and Alignment for Open-Set Few-Shot Image Classification
- URL: http://arxiv.org/abs/2507.11845v1
- Date: Wed, 16 Jul 2025 02:20:52 GMT
- Title: ProtoConNet: Prototypical Augmentation and Alignment for Open-Set Few-Shot Image Classification
- Authors: Kexuan Shi, Zhuang Qi, Jingjing Zhu, Lei Meng, Yaochen Zhang, Haibei Huang, Xiangxu Meng,
- Abstract summary: Open-set few-shot image classification aims to train models using a small amount of labeled data.<n>ProtoConNet incorporates background information from different samples to enhance the diversity of the feature space.<n> Experimental results from two datasets verified that ProtoConNet enhances the effectiveness of representation learning in few-shot scenarios.
- Score: 5.281661190732358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-set few-shot image classification aims to train models using a small amount of labeled data, enabling them to achieve good generalization when confronted with unknown environments. Existing methods mainly use visual information from a single image to learn class representations to distinguish known from unknown categories. However, these methods often overlook the benefits of integrating rich contextual information. To address this issue, this paper proposes a prototypical augmentation and alignment method, termed ProtoConNet, which incorporates background information from different samples to enhance the diversity of the feature space, breaking the spurious associations between context and image subjects in few-shot scenarios. Specifically, it consists of three main modules: the clustering-based data selection (CDS) module mines diverse data patterns while preserving core features; the contextual-enhanced semantic refinement (CSR) module builds a context dictionary to integrate into image representations, which boosts the model's robustness in various scenarios; and the prototypical alignment (PA) module reduces the gap between image representations and class prototypes, amplifying feature distances for known and unknown classes. Experimental results from two datasets verified that ProtoConNet enhances the effectiveness of representation learning in few-shot scenarios and identifies open-set samples, making it superior to existing methods.
Related papers
- Semantic-guided Representation Learning for Multi-Label Recognition [13.046479112800608]
Multi-label Recognition (MLR) involves assigning multiple labels to each data instance in an image.<n>Recent Vision and Language Pre-training methods have made significant progress in tackling zero-shot MLR tasks.<n>We introduce a Semantic-guided Representation Learning approach (SigRL) that enables the model to learn effective visual and textual representations.
arXiv Detail & Related papers (2025-04-04T08:15:08Z) - MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching [54.740256498985026]
Keypoint detection and description methods often struggle with multimodal data.<n>We propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching.
arXiv Detail & Related papers (2025-01-20T06:56:30Z) - Grounding Descriptions in Images informs Zero-Shot Visual Recognition [47.66166611138081]
We propose GRAIN, a new pretraining strategy aimed at aligning representations at both fine and coarse levels simultaneously.<n>We demonstrate the enhanced zero-shot performance of our model compared to current state-of-the art methods.
arXiv Detail & Related papers (2024-12-05T18:52:00Z) - Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning [13.68867780184022]
Few-shot learning aims to recognize new concepts using a limited number of visual samples.
Our framework incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs)
For the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an average improvement of 1.95% over the second-best competitor.
arXiv Detail & Related papers (2024-08-22T15:10:20Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - Cross-Modal Concept Learning and Inference for Vision-Language Models [31.463771883036607]
In existing fine-tuning methods, the class-specific text description is matched against the whole image.
We develop a new method called cross-model concept learning and inference (CCLI)
Our method automatically learns a large set of distinctive visual concepts from images using a set of semantic text concepts.
arXiv Detail & Related papers (2023-07-28T10:26:28Z) - PRIOR: Prototype Representation Joint Learning from Medical Images and
Reports [19.336988866061294]
We present a prototype representation learning framework incorporating both global and local alignment between medical images and reports.
In contrast to standard global multi-modality alignment methods, we employ a local alignment module for fine-grained representation.
A sentence-wise prototype memory bank is constructed, enabling the network to focus on low-level localized visual and high-level clinical linguistic features.
arXiv Detail & Related papers (2023-07-24T07:49:01Z) - Text Descriptions are Compressive and Invariant Representations for
Visual Learning [63.3464863723631]
We show that an alternative approach, in line with humans' understanding of multiple visual features per class, can provide compelling performance in the robust few-shot learning setting.
In particular, we introduce a novel method, textit SLR-AVD (Sparse Logistic Regression using Augmented Visual Descriptors).
This method first automatically generates multiple visual descriptions of each class via a large language model (LLM), then uses a VLM to translate these descriptions to a set of visual feature embeddings of each image, and finally uses sparse logistic regression to select a relevant subset of these features to classify
arXiv Detail & Related papers (2023-07-10T03:06:45Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
The goal of this paper is open-vocabulary object detection (OVOD)
We adopt a standard two-stage object detector architecture.
We explore three ways via: language descriptions, image exemplars, or a combination of the two.
arXiv Detail & Related papers (2023-06-08T18:31:56Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
We propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category.
Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model.
We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions.
arXiv Detail & Related papers (2022-04-08T00:55:15Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.