論文の概要: OrdShap: Feature Position Importance for Sequential Black-Box Models
- arxiv url: http://arxiv.org/abs/2507.11855v1
- Date: Wed, 16 Jul 2025 02:40:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.205948
- Title: OrdShap: Feature Position Importance for Sequential Black-Box Models
- Title(参考訳): OrdShap: 逐次ブラックボックスモデルにおける特徴位置の重要性
- Authors: Davin Hill, Brian L. Hill, Aria Masoomi, Vijay S. Nori, Robert E. Tillman, Jennifer Dy,
- Abstract要約: OrdShapは、モデルが特徴位置の変化に応じてどのように変化するかを定量化することで、効果を分散させる新しい属性手法である。
健康、自然言語、合成データセットから得られた経験的な結果は、OrdShapが価値と特徴位置の属性をキャプチャする効果を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 3.4057190746821586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential deep learning models excel in domains with temporal or sequential dependencies, but their complexity necessitates post-hoc feature attribution methods for understanding their predictions. While existing techniques quantify feature importance, they inherently assume fixed feature ordering - conflating the effects of (1) feature values and (2) their positions within input sequences. To address this gap, we introduce OrdShap, a novel attribution method that disentangles these effects by quantifying how a model's predictions change in response to permuting feature position. We establish a game-theoretic connection between OrdShap and Sanchez-Berganti\~nos values, providing a theoretically grounded approach to position-sensitive attribution. Empirical results from health, natural language, and synthetic datasets highlight OrdShap's effectiveness in capturing feature value and feature position attributions, and provide deeper insight into model behavior.
- Abstract(参考訳): 逐次的なディープラーニングモデルは、時間的またはシーケンシャルな依存関係を持つドメインで優れているが、その複雑さは、それらの予測を理解するために、ポストホックな特徴帰属法を必要とする。
既存の技術は特徴の重要性を定量化するが、それらは本質的には(1)特徴値と(2)入力シーケンス内の位置の影響を融合させる固定特徴順序付けを仮定する。
このギャップに対処するために,モデルが特徴位置の変化に応じてどのように変化するかを定量化することにより,これらの効果を分散させる新しい属性手法OrdShapを導入する。
我々はOrdShap と Sanchez-Berganti\~nos の値のゲーム理論的関係を確立し、位置感性帰属に対する理論的基礎的なアプローチを提供する。
健康、自然言語、合成データセットから得られた経験的な結果は、OrdShapが特徴値と特徴位置の属性を捕捉し、モデル行動に関する深い洞察を提供する上での有効性を浮き彫りにしている。
関連論文リスト
- Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors [61.92704516732144]
正当性予測の最も堅牢な特徴は、モデルの振舞いに特徴的な因果的役割を果たすものであることを示す。
モデル出力の正しさを予測するために因果メカニズムを利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2025-05-17T00:31:39Z) - Improving Neural Additive Models with Bayesian Principles [54.29602161803093]
ニューラル加算モデル(NAM)は、個別の加算サブネットワークでキャリブレーションされた入力特徴を扱うことにより、ディープニューラルネットワークの透明性を高める。
本研究では,Laplace-approximated NAM (LA-NAMs) を開発した。
論文 参考訳(メタデータ) (2023-05-26T13:19:15Z) - Exploring the cloud of feature interaction scores in a Rashomon set [17.775145325515993]
本稿では,Rashomon セットのコンテキストにおける特徴相互作用スコア (FIS) について述べる。
我々は、合成データを用いてFISの特性を実証し、他の統計分野との接続を図示する。
この結果から,提案したFISは,機械学習モデルにおける特徴相互作用の性質に関する貴重な洞察を得られることが示唆された。
論文 参考訳(メタデータ) (2023-05-17T13:05:26Z) - Asymmetric feature interaction for interpreting model predictions [13.934784414106087]
自然言語処理では、ディープニューラルネットワーク(DNN)はコンテキスト間の複雑な相互作用をモデル化することができる。
本研究では,非対称な高次特徴相互作用の探索を目的とした非対称な特徴相互作用帰属モデルを提案する。
2つの感情分類データセットによる実験結果から,我々のモデルが最先端の特徴的相互作用帰属法に対して優位であることが確認された。
論文 参考訳(メタデータ) (2023-05-12T03:31:24Z) - Flexible Networks for Learning Physical Dynamics of Deformable Objects [2.567499374977917]
本稿では, 粒子ベース表現を用いた変形可能な物体の将来の状態を推定するために, 時間的ポイントネット (TP-Net) というモデルを提案する。
TP-Netは、並列に設定された各入力ポイントからグローバルな特徴を抽出する共有特徴抽出器と、これらの特徴を集約して将来の予測を行う予測ネットワークから構成される。
実験により,我々のモデルは,リアルタイム予測速度で,合成データセットと実世界のデータセットの両方で最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2021-12-07T14:34:52Z) - Counterfactual Shapley Additive Explanations [6.916452769334367]
本稿では,逆ファクト生成技術を用いて背景データセットを生成するSHAPの変種であるCoSHAPを提案する。
我々は、特徴属性にShapley値を使用する場合、背景データセットを慎重に考慮するためのアクション可能なリコース設定の必要性を動機付けている。
論文 参考訳(メタデータ) (2021-10-27T08:44:53Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Joint Shapley values: a measure of joint feature importance [6.169364905804678]
結合Shapley値を導入し、Shapley公理を直接拡張する。
ジョイントシェープの値は、モデルの予測に対する特徴の平均的な影響を測る。
ゲームの結果、ジョイントシェープの値は既存の相互作用指標とは異なる洞察を示します。
論文 参考訳(メタデータ) (2021-07-23T17:22:37Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。