Toxicity-Aware Few-Shot Prompting for Low-Resource Singlish Translation
- URL: http://arxiv.org/abs/2507.11966v1
- Date: Wed, 16 Jul 2025 06:58:02 GMT
- Title: Toxicity-Aware Few-Shot Prompting for Low-Resource Singlish Translation
- Authors: Ziyu Ge, Gabriel Chua, Leanne Tan, Roy Ka-Wei Lee,
- Abstract summary: Translating toxic content between low-resource language pairs poses challenges due to scarce parallel data and safety filters that sanitize offensive expressions.<n>We propose a two-stage framework for toxicity-preserving translation, demonstrated on a code-mixed Singlish safety corpus.<n>By positioning Singlish as a testbed for inclusive NLP, we underscore the importance of preserving sociolinguistic nuance in real-world applications.
- Score: 3.7678366606419345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As online communication increasingly incorporates under-represented languages and colloquial dialects, standard translation systems often fail to preserve local slang, code-mixing, and culturally embedded markers of harmful speech. Translating toxic content between low-resource language pairs poses additional challenges due to scarce parallel data and safety filters that sanitize offensive expressions. In this work, we propose a reproducible, two-stage framework for toxicity-preserving translation, demonstrated on a code-mixed Singlish safety corpus. First, we perform human-verified few-shot prompt engineering: we iteratively curate and rank annotator-selected Singlish-target examples to capture nuanced slang, tone, and toxicity. Second, we optimize model-prompt pairs by benchmarking several large language models using semantic similarity via direct and back-translation. Quantitative human evaluation confirms the effectiveness and efficiency of our pipeline. Beyond improving translation quality, our framework contributes to the safety of multicultural LLMs by supporting culturally sensitive moderation and benchmarking in low-resource contexts. By positioning Singlish as a testbed for inclusive NLP, we underscore the importance of preserving sociolinguistic nuance in real-world applications such as content moderation and regional platform governance.
Related papers
- RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages [3.7678366606419345]
RabakBench is a new multilingual safety benchmark localized to Singapore's unique linguistic context.<n>The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
arXiv Detail & Related papers (2025-07-08T13:37:25Z) - LLM-Based Evaluation of Low-Resource Machine Translation: A Reference-less Dialect Guided Approach with a Refined Sylheti-English Benchmark [1.3927943269211591]
We propose a comprehensive framework that enhances Large Language Models (LLMs)-based machine translation evaluation.<n>We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers.<n>Our evaluation shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation.
arXiv Detail & Related papers (2025-05-18T07:24:13Z) - Creating and Evaluating Code-Mixed Nepali-English and Telugu-English Datasets for Abusive Language Detection Using Traditional and Deep Learning Models [1.835004446596942]
We introduce a novel, manually annotated dataset of 2 thousand Telugu-English and 5 Nepali-English code-mixed comments.<n>The dataset undergoes rigorous preprocessing before being evaluated across multiple Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs)<n>Our findings provide key insights into the challenges of detecting abusive language in code-mixed settings.
arXiv Detail & Related papers (2025-04-23T11:29:10Z) - MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety [56.79292318645454]
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking.<n>This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited.<n>We introduce a multilingual guardrail with reasoning for prompt classification.
arXiv Detail & Related papers (2025-04-21T17:15:06Z) - A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
We probe multilingual language models for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs.
We also devise a novel method to expose this knowledge by additionally fine-tuning multilingual models.
We report substantial gains on standard benchmarks.
arXiv Detail & Related papers (2022-04-30T13:23:16Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z) - Incorporating Bilingual Dictionaries for Low Resource Semi-Supervised
Neural Machine Translation [5.958653653305609]
We incorporate widely available bilingual dictionaries that yield word-by-word translations to generate synthetic sentences.
This automatically expands the vocabulary of the model while maintaining high quality content.
arXiv Detail & Related papers (2020-04-05T02:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.