LLM-Based Evaluation of Low-Resource Machine Translation: A Reference-less Dialect Guided Approach with a Refined Sylheti-English Benchmark
- URL: http://arxiv.org/abs/2505.12273v1
- Date: Sun, 18 May 2025 07:24:13 GMT
- Title: LLM-Based Evaluation of Low-Resource Machine Translation: A Reference-less Dialect Guided Approach with a Refined Sylheti-English Benchmark
- Authors: Md. Atiqur Rahman, Sabrina Islam, Mushfiqul Haque Omi,
- Abstract summary: We propose a comprehensive framework that enhances Large Language Models (LLMs)-based machine translation evaluation.<n>We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers.<n>Our evaluation shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation.
- Score: 1.3927943269211591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating machine translation (MT) for low-resource languages poses a persistent challenge, primarily due to the limited availability of high quality reference translations. This issue is further exacerbated in languages with multiple dialects, where linguistic diversity and data scarcity hinder robust evaluation. Large Language Models (LLMs) present a promising solution through reference-free evaluation techniques; however, their effectiveness diminishes in the absence of dialect-specific context and tailored guidance. In this work, we propose a comprehensive framework that enhances LLM-based MT evaluation using a dialect guided approach. We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers. To address the vocabulary gap, we augment the tokenizer vocabulary with dialect-specific terms. We further introduce a regression head to enable scalar score prediction and design a dialect-guided (DG) prompting strategy. Our evaluation across multiple LLMs shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation, along with improvements across other evaluation settings. The dataset and the code are available at https://github.com/180041123-Atiq/MTEonLowResourceLanguage.
Related papers
- An LLM-as-a-judge Approach for Scalable Gender-Neutral Translation Evaluation [14.799630514233238]
Gender-neutral translation (GNT) aims to avoid expressing the gender of human referents when the source text lacks explicit cues about the gender of those referents.<n>We investigate the use of large language models (LLMs) as evaluators of GNT.
arXiv Detail & Related papers (2025-04-16T10:14:27Z) - Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using datasets like NLI.<n>Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency.<n>We propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence.<n> Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
arXiv Detail & Related papers (2025-02-19T12:07:53Z) - Evaluating Standard and Dialectal Frisian ASR: Multilingual Fine-tuning and Language Identification for Improved Low-resource Performance [9.624005980086707]
State-of-the-art methods deploy self-supervised transfer learning where a model pre-trained on large amounts of data is fine-tuned using little labeled data.<n>We show that Frisian ASR performance can be improved by using multilingual fine-tuning data and an auxiliary language identification task.
arXiv Detail & Related papers (2025-02-07T12:42:46Z) - When LLMs Struggle: Reference-less Translation Evaluation for Low-resource Languages [9.138590152838754]
Segment-level quality estimation (QE) is a challenging cross-lingual language understanding task.<n>We comprehensively evaluate large language models (LLMs) in zero/few-shot scenarios.<n>Our results indicate that prompt-based approaches are outperformed by the encoder-based fine-tuned QE models.
arXiv Detail & Related papers (2025-01-08T12:54:05Z) - Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning [0.4194295877935868]
This study investigates the effects of Low-Rank Adaptation (LoRA) -Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi.<n>Using a translated dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts.
arXiv Detail & Related papers (2024-11-27T18:14:38Z) - Refining Translations with LLMs: A Constraint-Aware Iterative Prompting Approach [7.5069214839655345]
Large language models (LLMs) have demonstrated remarkable proficiency in machine translation (MT)
We propose a multi-step prompt chain that enhances translation faithfulness by prioritizing key terms crucial for semantic accuracy.
Experiments using Llama and Qwen as base models on the FLORES-200 and WMT datasets demonstrate significant improvements over baselines.
arXiv Detail & Related papers (2024-11-13T05:40:24Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)<n>Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)<n>We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks [68.33068005789116]
We present the first study aimed at objectively assessing the fairness and robustness of Large Language Models (LLMs) in handling dialects in canonical reasoning tasks.<n>We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K.<n>Our findings reveal that textbfalmost all of these widely used models show significant brittleness and unfairness to queries in AAVE.
arXiv Detail & Related papers (2024-10-14T18:44:23Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models [57.80514758695275]
Using large language models (LLMs) for assessing the quality of machine translation (MT) achieves state-of-the-art performance at the system level.
We propose a new prompting method called textbftextttError Analysis Prompting (EAPrompt)
This technique emulates the commonly accepted human evaluation framework - Multidimensional Quality Metrics (MQM) and textitproduces explainable and reliable MT evaluations at both the system and segment level.
arXiv Detail & Related papers (2023-03-24T05:05:03Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
Evaluation of cross-lingual encoders is usually performed either via zero-shot cross-lingual transfer in supervised downstream tasks or via unsupervised cross-lingual similarity.
This paper concerns ourselves with reference-free machine translation (MT) evaluation where we directly compare source texts to (sometimes low-quality) system translations.
We systematically investigate a range of metrics based on state-of-the-art cross-lingual semantic representations obtained with pretrained M-BERT and LASER.
We find that they perform poorly as semantic encoders for reference-free MT evaluation and identify their two key limitations.
arXiv Detail & Related papers (2020-05-03T22:10:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.