論文の概要: Robust Planning for Autonomous Vehicles with Diffusion-Based Failure Samplers
- arxiv url: http://arxiv.org/abs/2507.11991v1
- Date: Wed, 16 Jul 2025 07:43:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.283665
- Title: Robust Planning for Autonomous Vehicles with Diffusion-Based Failure Samplers
- Title(参考訳): 拡散型故障サンプリング装置を用いた自動運転車のロバスト計画
- Authors: Juanran Wang, Marc R. Schlichting, Mykel J. Kochenderfer,
- Abstract要約: 交差点などの高リスク交通ゾーンが衝突の主な原因である。
本研究は、交差点環境下での自動運転車の安全性を高めるために、深層生成モデルを活用する。
- 参考スコア(独自算出の注目度): 36.896695278624776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-risk traffic zones such as intersections are a major cause of collisions. This study leverages deep generative models to enhance the safety of autonomous vehicles in an intersection context. We train a 1000-step denoising diffusion probabilistic model to generate collision-causing sensor noise sequences for an autonomous vehicle navigating a four-way intersection based on the current relative position and velocity of an intruder. Using the generative adversarial architecture, the 1000-step model is distilled into a single-step denoising diffusion model which demonstrates fast inference speed while maintaining similar sampling quality. We demonstrate one possible application of the single-step model in building a robust planner for the autonomous vehicle. The planner uses the single-step model to efficiently sample potential failure cases based on the currently measured traffic state to inform its decision-making. Through simulation experiments, the robust planner demonstrates significantly lower failure rate and delay rate compared with the baseline Intelligent Driver Model controller.
- Abstract(参考訳): 交差点などの高リスク交通ゾーンが衝突の主な原因である。
本研究は、交差点環境下での自動運転車の安全性を高めるために、深層生成モデルを活用する。
本研究では,1000ステップの拡散確率モデルを訓練し,イントルーダの現在の相対位置と速度に基づいて4方向交差点を走行する自律走行車に対して衝突型センサノイズ列を生成する。
生成逆数構造を用いて、1000ステップモデルを1ステップの縮退拡散モデルに蒸留し、同様のサンプリング品質を維持しながら高速な推論速度を示す。
自動運転車のロバストプランナー構築における単一ステップモデルの適用可能性を示す。
プランナーは、単一ステップモデルを使用して、現在測定されているトラフィック状態に基づいて、潜在的な障害ケースを効率的にサンプリングし、意思決定に通知する。
シミュレーション実験により、ロバストプランナーは、ベースラインのIntelligent Driver Modelコントローラと比較して、失敗率と遅延率を著しく低下させる。
関連論文リスト
- Seeking to Collide: Online Safety-Critical Scenario Generation for Autonomous Driving with Retrieval Augmented Large Language Models [39.139025989575686]
本稿では,安全クリティカルな運転シナリオを生成するための大規模言語モデル (LLM) フレームワークについて紹介する。
本モデルでは, 平均最小衝突時間を1.62秒から1.08秒に短縮し, 75%の衝突速度でベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2025-05-02T03:22:00Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
本研究では,自動車追従軌道予測のためのスケールドノイズ条件拡散モデルを提案する。
車両間の詳細な相互作用と自動車追従ダイナミクスを生成フレームワークに統合し、予測された軌跡の精度と妥当性を向上させる。
種々の実世界の運転シナリオに関する実験結果は,提案手法の最先端性能と堅牢性を示すものである。
論文 参考訳(メタデータ) (2024-11-23T23:13:45Z) - Foundation Models for Rapid Autonomy Validation [4.417336418010182]
重要な課題は、自動運転車が遭遇するあらゆる種類の運転シナリオでテストする必要があることだ。
本研究では,運転シナリオを再構築するための行動基礎モデル,特にマスク付きオートエンコーダ(MAE)の使用を提案する。
論文 参考訳(メタデータ) (2024-10-22T15:32:43Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Safe Navigation in Unstructured Environments by Minimizing Uncertainty
in Control and Perception [5.46262127926284]
制御と知覚の不確実性は、非構造環境における自動運転車のナビゲーションに課題をもたらす。
本稿では,安全かつ信頼性の高いナビゲーションを実現するために,制御と認識の不確実性を最小化するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T11:24:03Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。